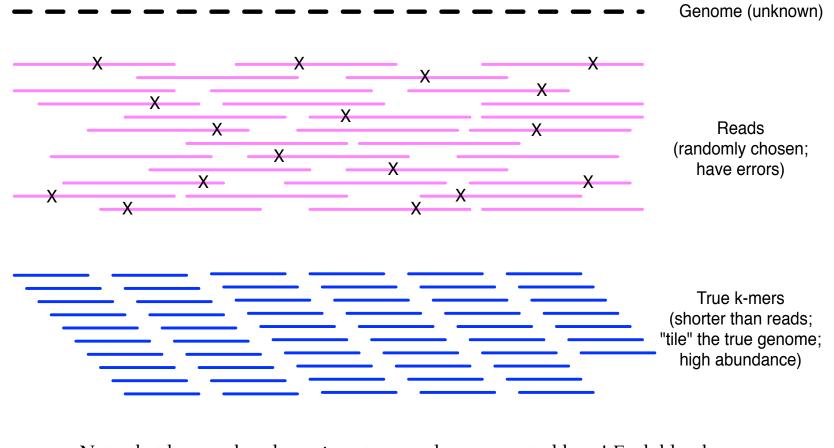
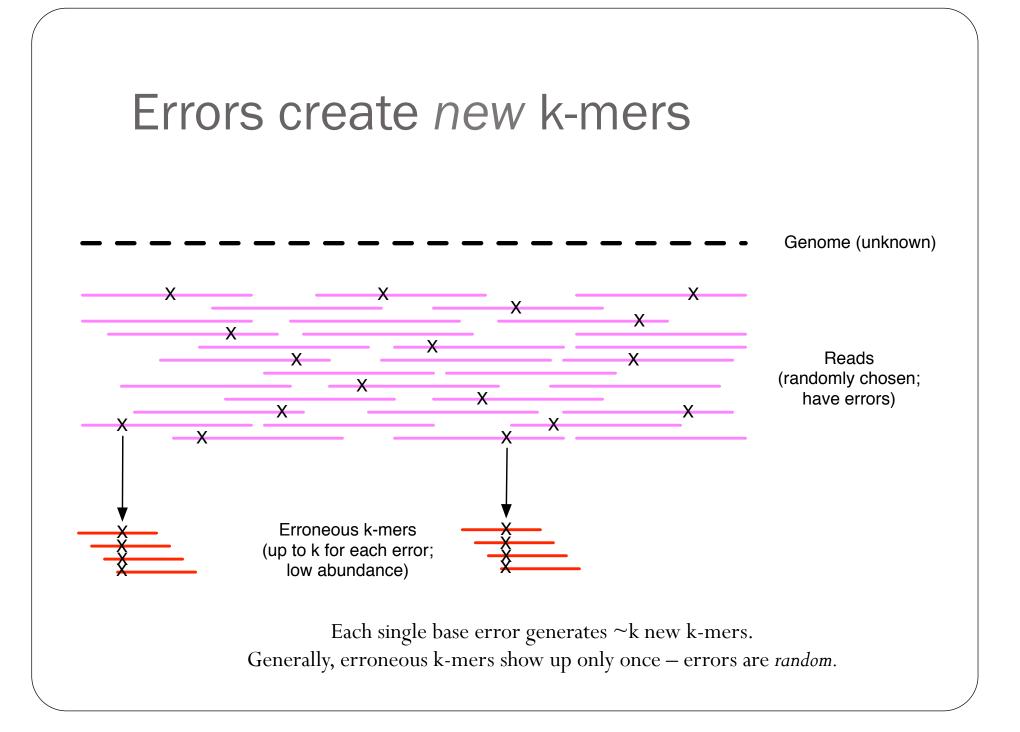


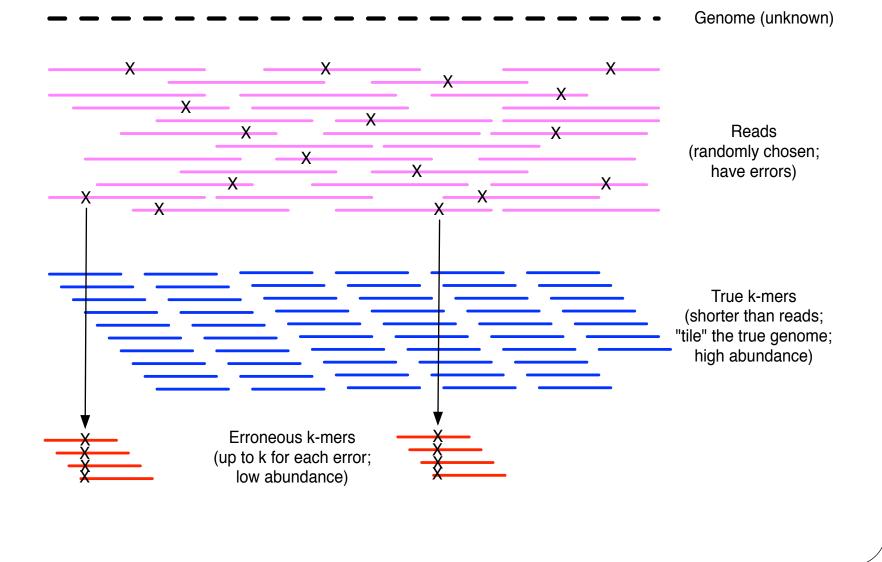
#### Reducing to k-mers ⇔overlaps



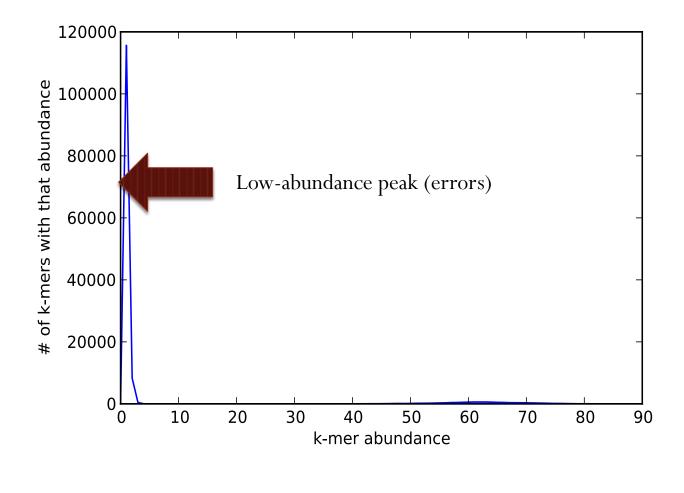
Note that k-mer abundance is not properly represented here! Each blue kmer will be present around 10 times.



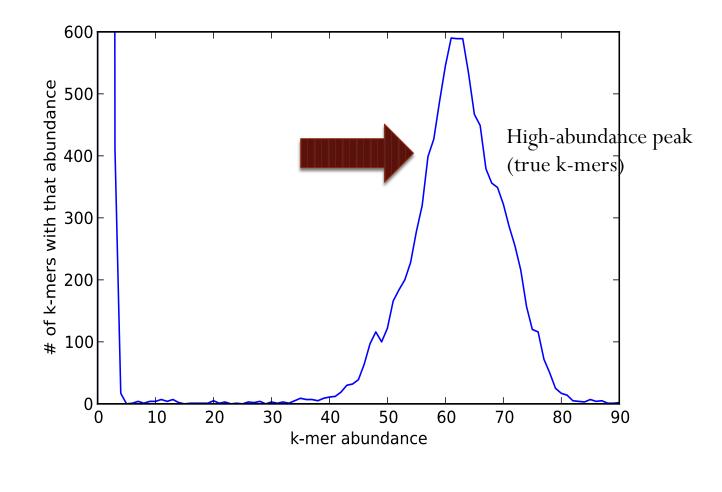
So, k-mer abundance plots are mixtures of true and false k-mers.



#### Counting k-mers - histograms



#### Counting k-mers - histograms



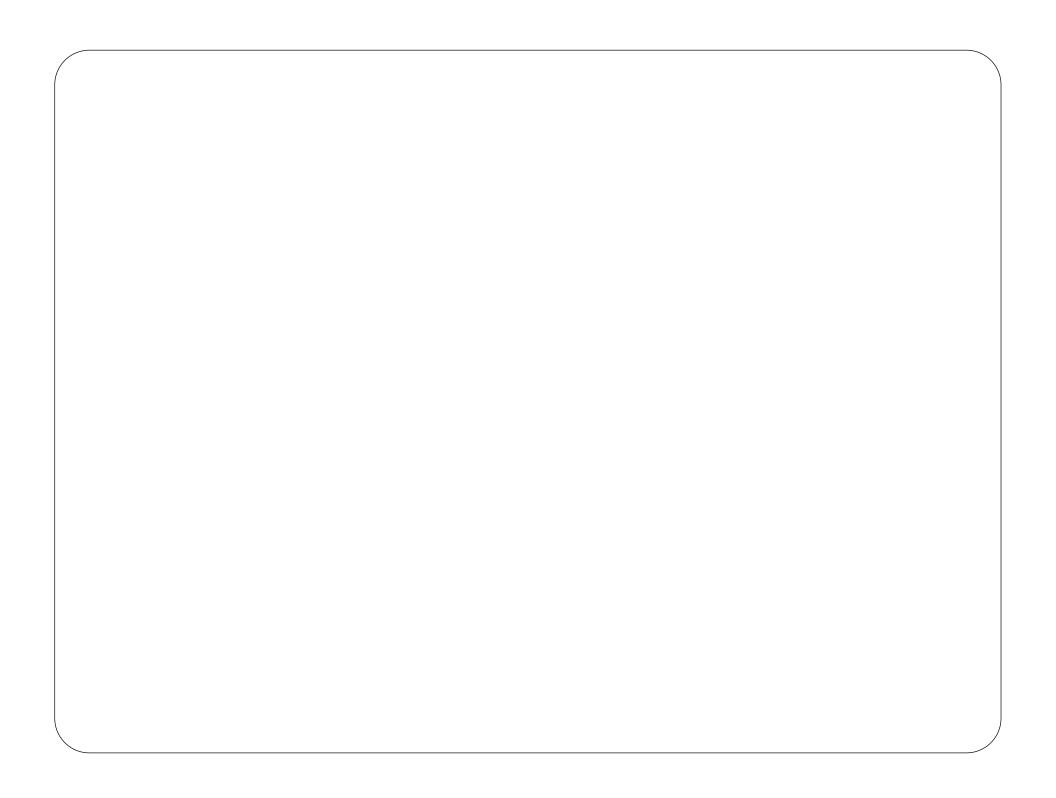
|                            | FP rate | bases trimmed | distinct k-mers | unique k-mers | unique k-mers at 3′ end |
|----------------------------|---------|---------------|-----------------|---------------|-------------------------|
| untrimmed                  | -       | -             | 41.6 m          | 34.1 m        | 30.4%                   |
| khmer iteration 1          | 80.0%   | 13.5%         | 13.3 m          | 6.5 m         | 29.8%                   |
| khmer iteration 2          | 40.2%   | 1.7%          | 7.6 m           | 909.9k        | 12.3%                   |
| khmer iteration 3          | 25.4%   | 0.3%          | 6.8 m           | 168.1k        | 3.1%                    |
| khmer iteration 4          | 23.2%   | 0.1%          | 6.7 m           | 35.8k         | 0.7%                    |
| khmer iteration 5          | 22.8%   | 0.0%          | 6.6 m           | 7.9k          | 0.2%                    |
| khmer iteration 6          | 22.7%   | 0.0%          | 6.6 m           | 1.9k          | 0.0%                    |
| filter by FASTX            | -       | 9.1%          | 26.6 m          | 20.3 m        | 26.3%                   |
| filter by seqtk(default)   | -       | 8.9%          | 17.7 m          | 12.1 m        | 12.3%                   |
| filter by seqtk(-q 0.01)   | -       | 15.4%         | 9.9 m           | 5.1 m         | 5.2%                    |
| filter by seqtk(-b 3 -e 5) | -       | 8.0%          | 34.5 m          | 27.7 m        | 25.3%                   |

The results of trimming reads at unique (erroneous) k-mers from a 5 m read *E. coli* data set (1.4 GB) in under 30 MB of RAM. After each iteration, we measured the total number of distinct k-mers in the data set, the total number of unique (and likely erroneous) k-mers remaining, and the number of unique k-mers present at the 3' end of reads.

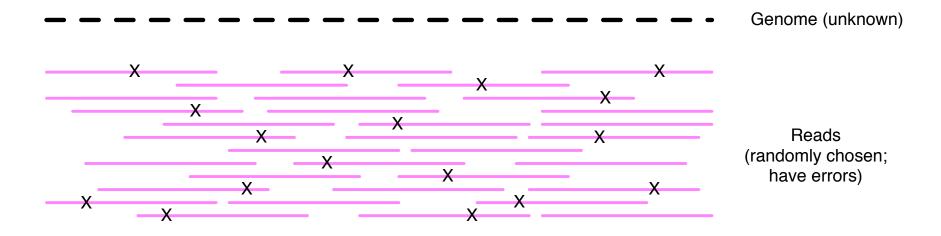
doi:10.1371/journal.pone.0101271.t003

#### K-mer abundance trimming removes errors effectively!

Zhang et al. PLoS One, 2014



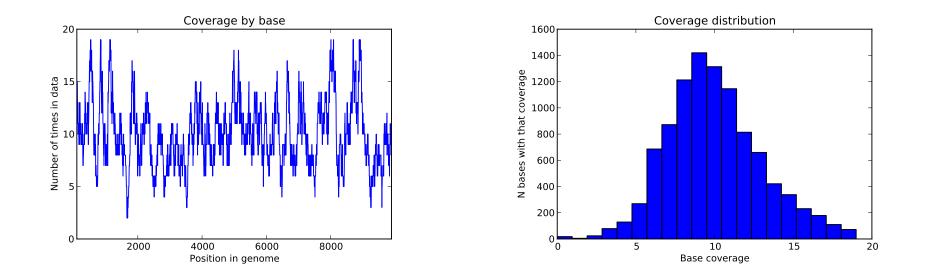
### Shotgun sequencing and coverage



"Coverage" is simply the average number of reads that overlap each true base in genome.

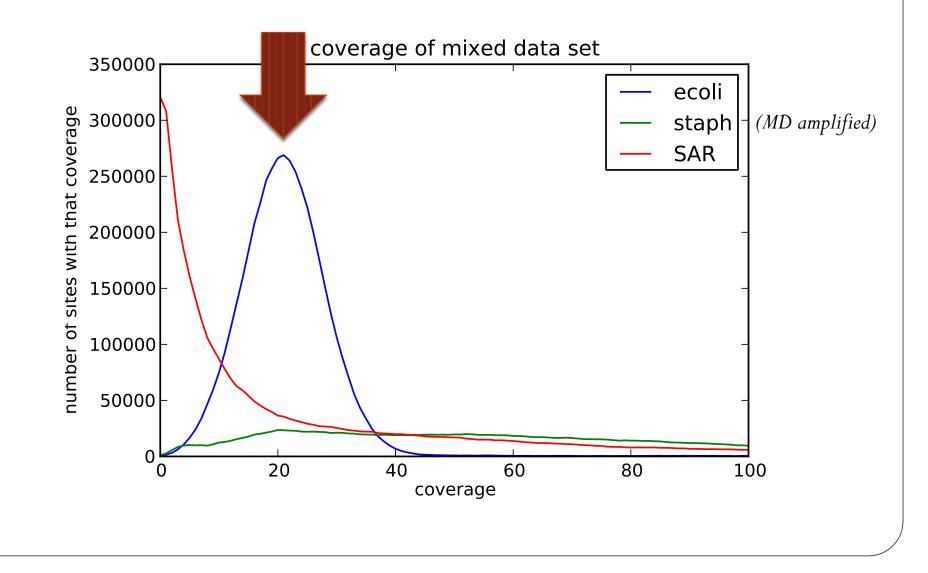
Here, the coverage is  $\sim 10 - just draw a line straight down from the top through all of the reads.$ 

# Random sampling => deep sampling needed



Typically 10-100x needed for robust recovery (300 Gbp for human)

Various experimental treatments can also modify coverage distribution.



Non-normal coverage distributions lead to decreased assembly sensitivity

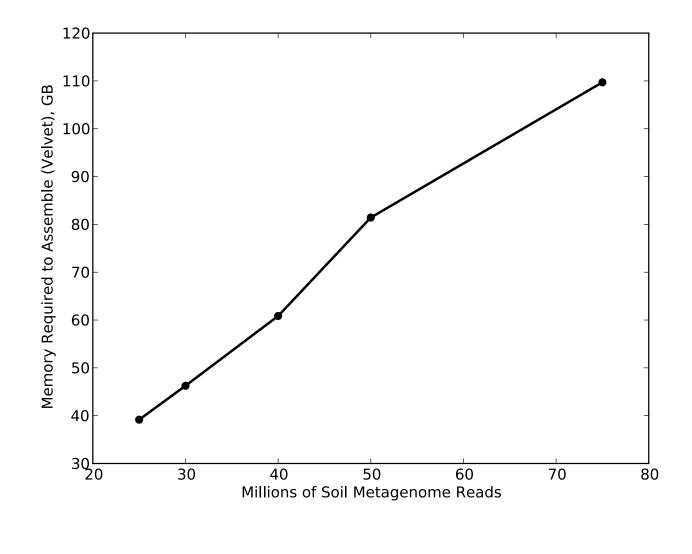
- Many assemblers embed a "coverage model" in their approach.
  - Genome assemblers: abnormally low coverage is erroneous; abnormally high coverage is repetitive sequence.
  - Transcriptome assemblers: isoforms should have same coverage across the entire isoform.
  - Metagenome assemblers: differing abundances indicate different strains.
- Is there a different way? (Yes.)

Memory requirements (Velvet/Oases – est)

- Bacterial genome (colony) • 1-2 GB
- 500-1000 GB • Human genome
- Vertebrate mRNA • 100 GB +
- Low complexity metagenome
- High complexity metagenome

- 100 GB
- 1000 GB ++

#### Practical memory measurements



#### K-mer based assemblers scale poorly

Why do big data sets require big machines??

Memory usage ~ "real" variation + number of errors Number of errors ~ size of data set

GCGTCAGGTAGCAGACCACCGCCATGGCGACGATG

GCGTCAGGTAGGAGACCACCGTCATGGCGACGATG

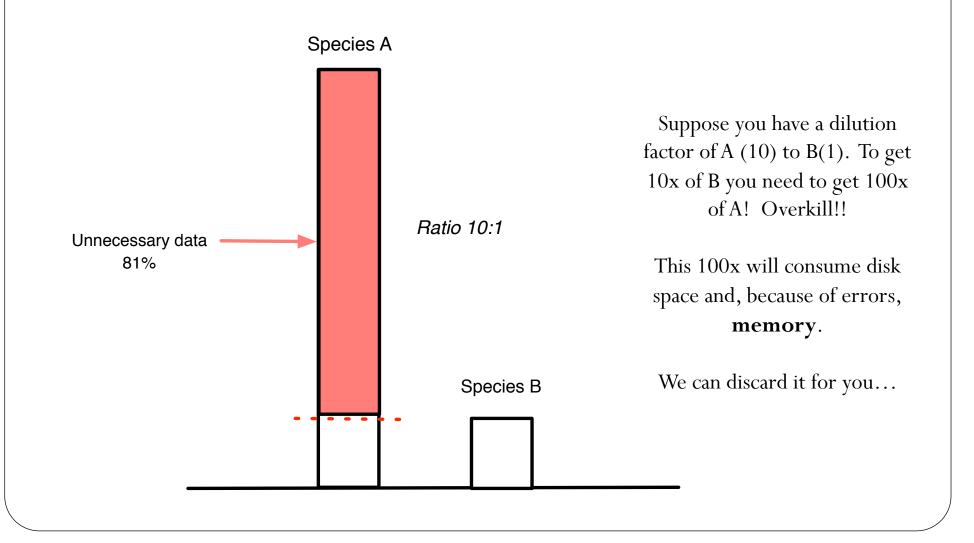
GCGTTAGGTAGGAGACCACCGCCATGGCGACGATG

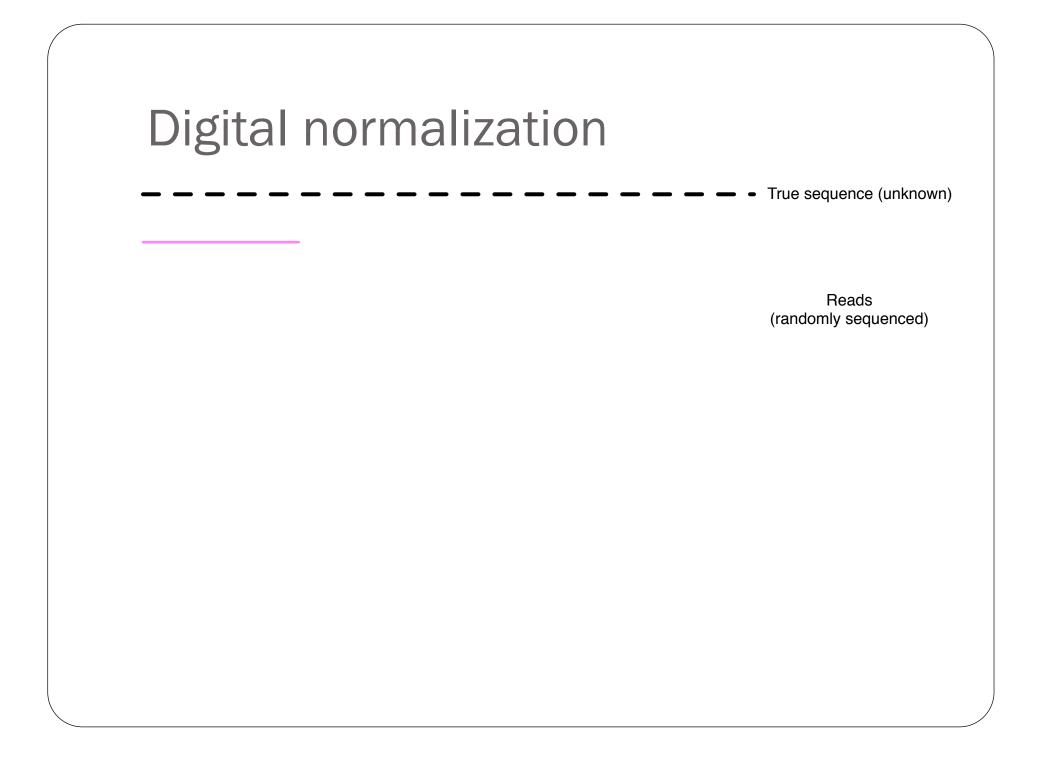
GCGTCAGGTAGGAGACCGCCGCCATGGCGACGATG

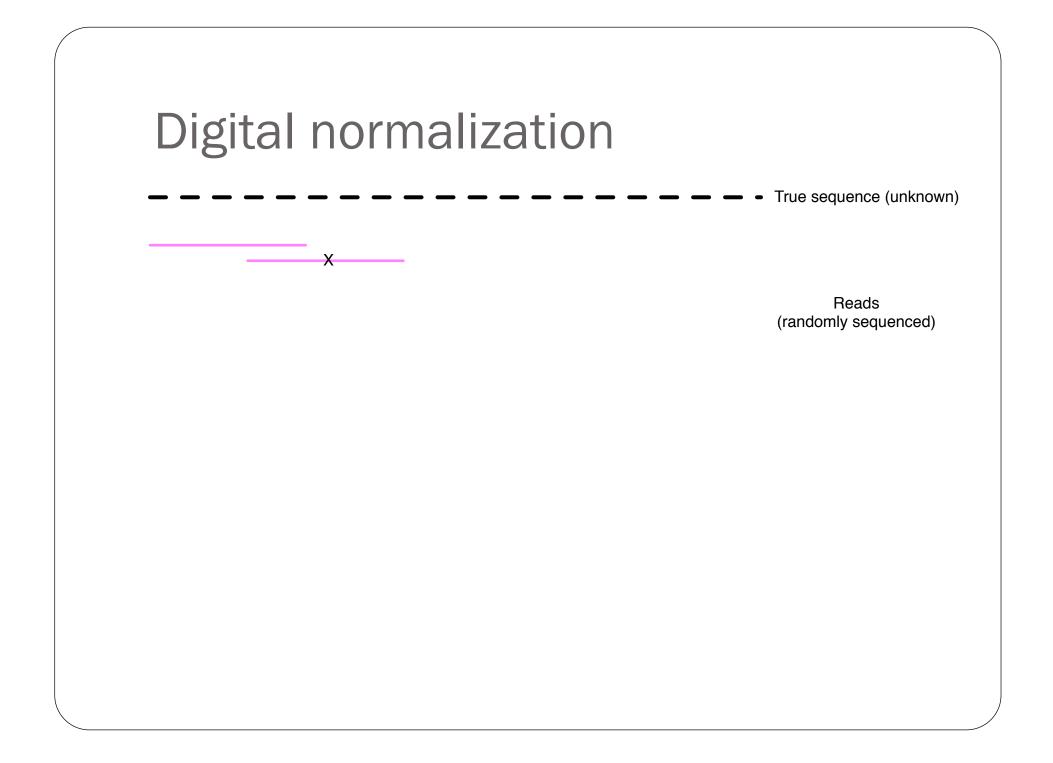
### Why does efficiency matter?

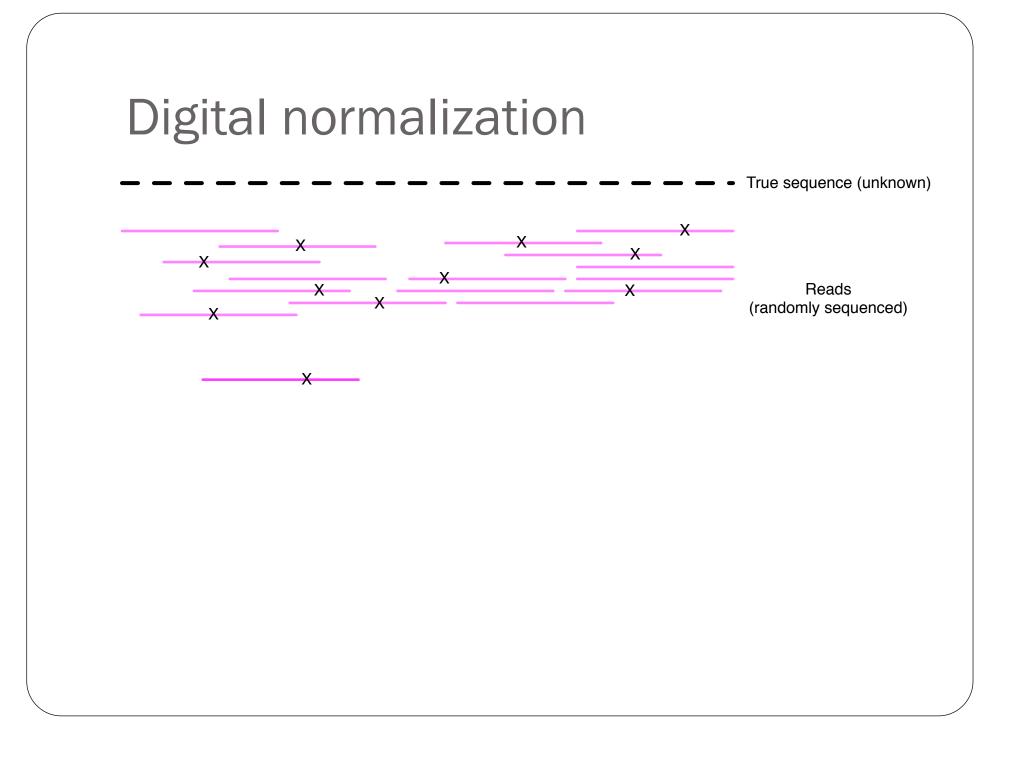
- It is now cheaper to generate sequence than it is to analyze it computationally!
  - Machine time
  - (Wo)man power/time
- More efficient programs allow better exploration of analysis parameters for maximizing sensitivity.
- Better or more sensitive bioinformatic approaches can be developed on top of more efficient theory.

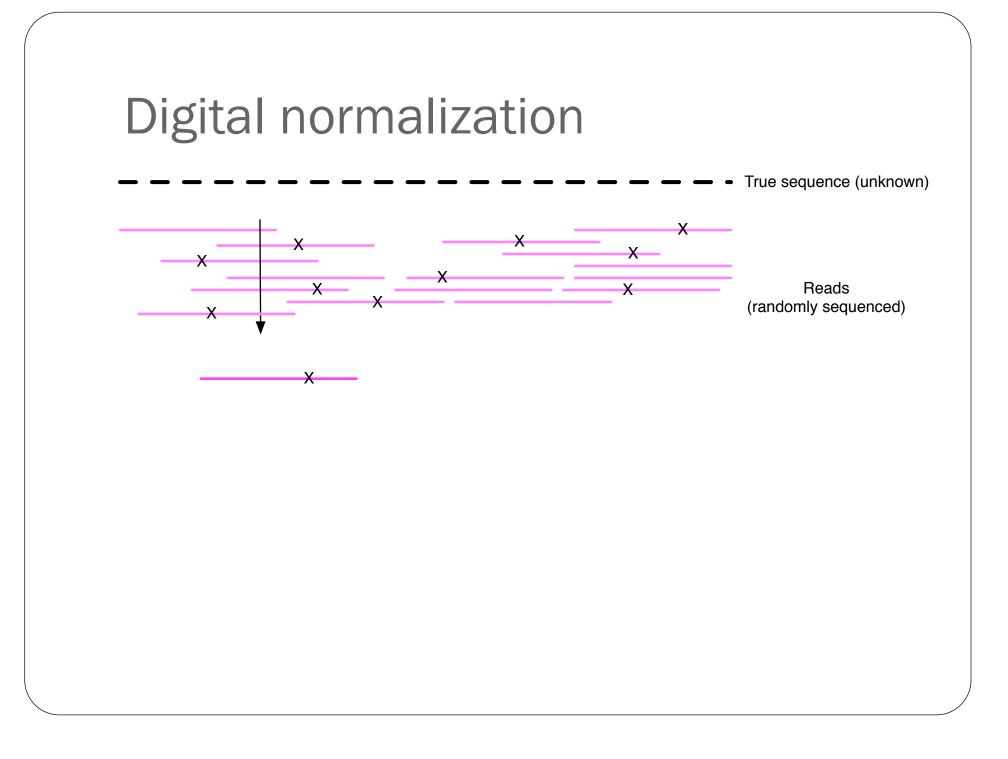


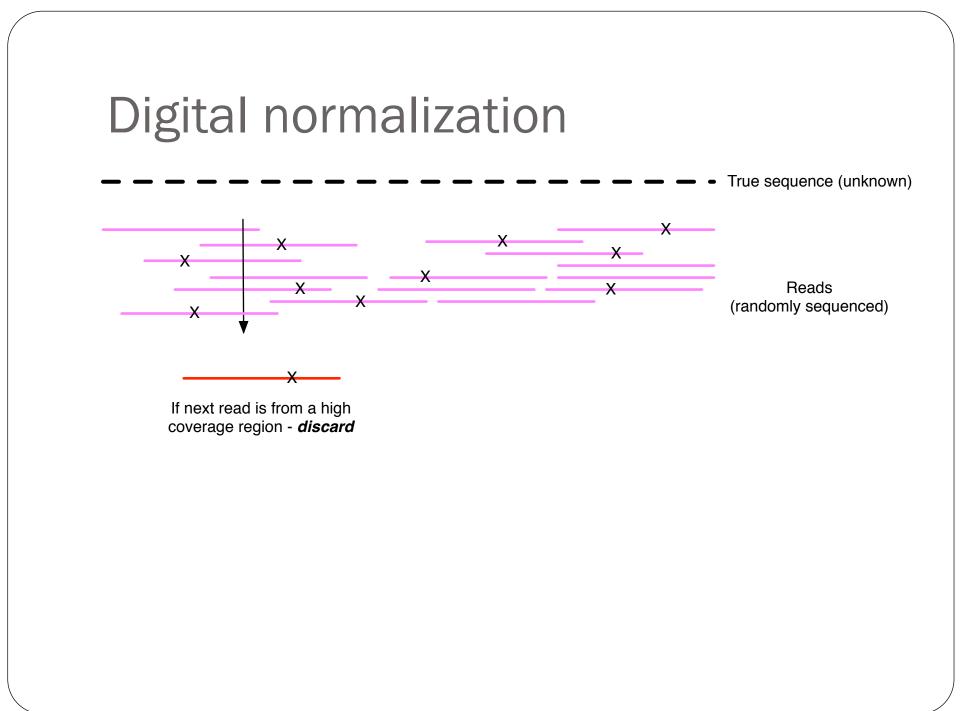


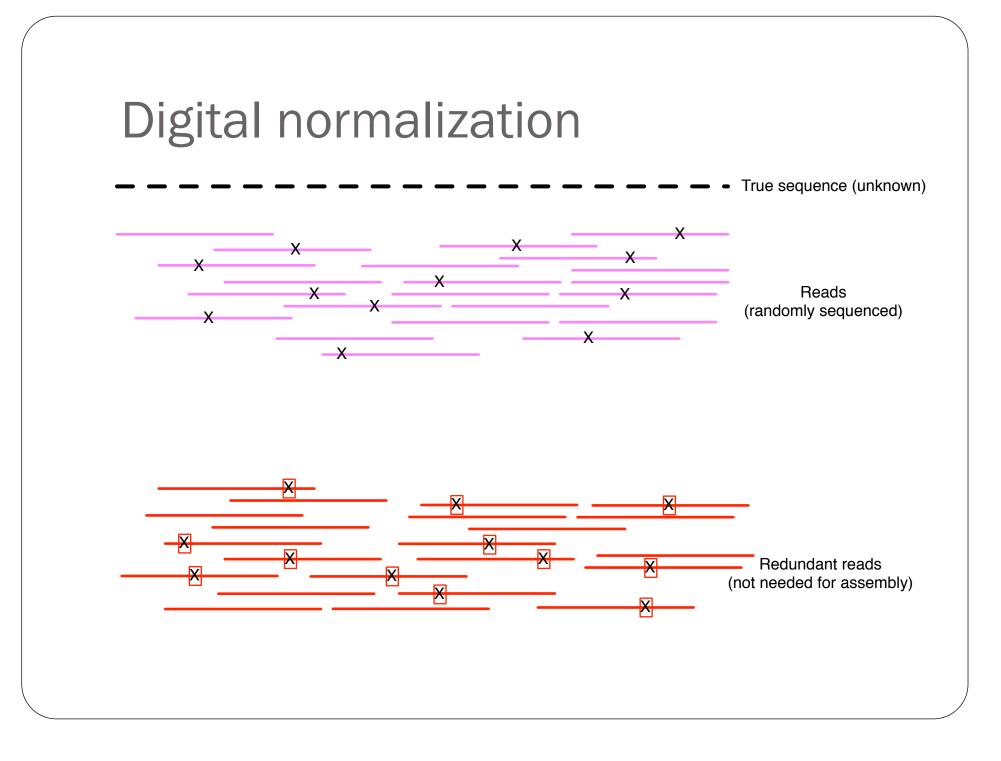








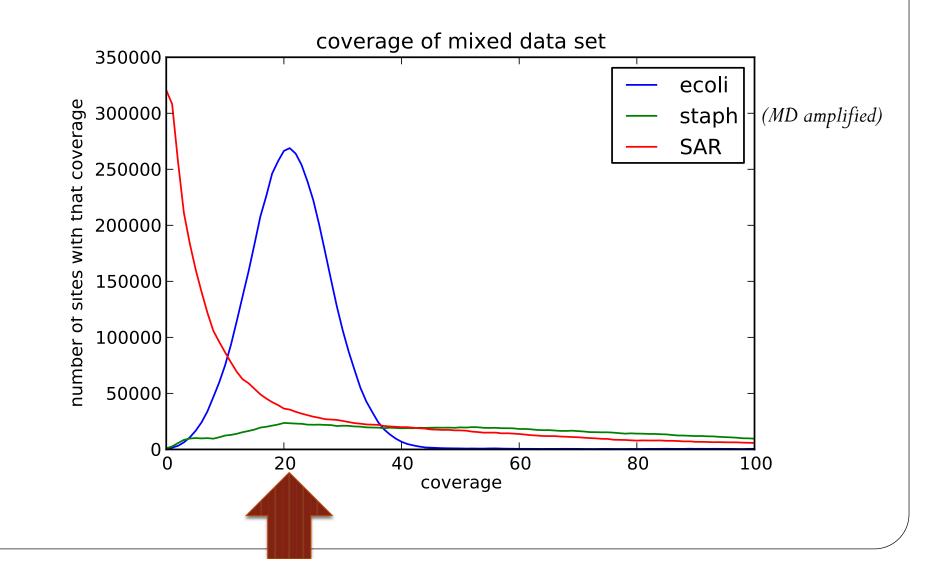




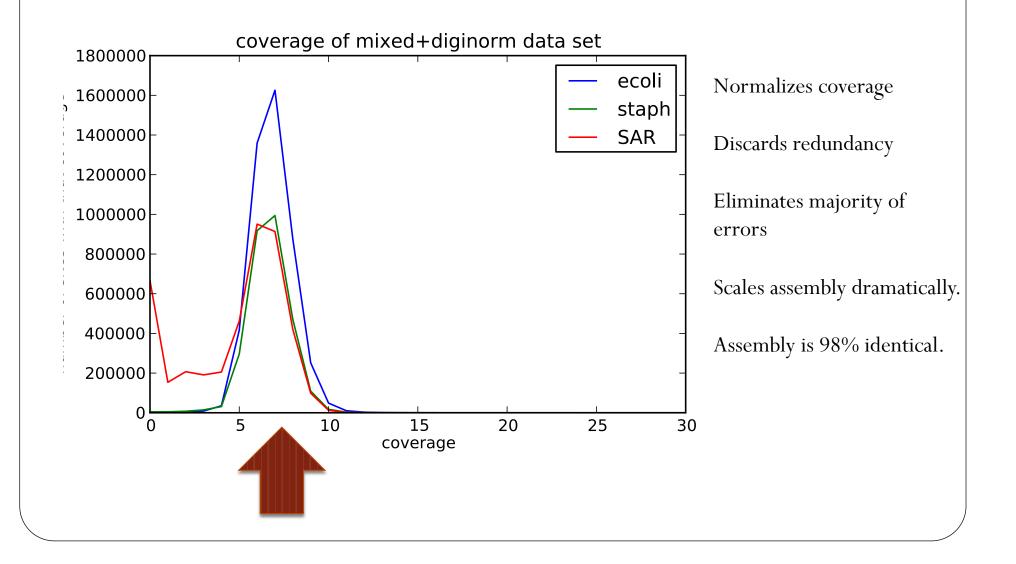
## **Digital normalization approach** A *digital* analog to cDNA library normalization, diginorm:

- Is single pass: looks at each read only once;
- Does not "collect" the majority of errors;
- Keeps all low-coverage reads;
- Smooths out coverage of regions.

#### Coverage before digital normalization:



#### Coverage after digital normalization:



## Digital normalization approach

A *digital* analog to cDNA library normalization, diginorm is a read prefiltering approach that:

- Is single pass: looks at each read only once;
- Does not "collect" the majority of errors;
- Keeps all low-coverage reads;
- Smooths out coverage of regions.

## Contig assembly is significantly more efficient and now scales with underlying genome size

#### Table 3. Three-pass digital normalization reduces computational requirements for contig assembly of genomic data.

| Data set                        | N reads pre/post | Assembly time pre/post | Assembly memory pre/post |  |
|---------------------------------|------------------|------------------------|--------------------------|--|
| E. coli                         | 31m / 0.6m       | 1040s / 63s (16.5x)    | 11.2gb / 0.5 gb (22.4x)  |  |
| S. aureus single-cell           | 58m / 0.3m       | 5352s / 35s (153x)     | 54.4gb / 0.4gb (136x)    |  |
| Deltaproteobacteria single-cell | 67m / 0.4m       | 4749s / 26s (182.7x)   | 52.7gb / 0.4gb (131.8x)  |  |

• Transcriptomes, microbial genomes incl MDA, and most metagenomes can be assembled in under 50 GB of RAM, with identical or *improved* results.

## Digital normalization retains information, while discarding data and errors

Table 1. Digital normalization to C=20 removes many erroneous k-mers from sequencing data sets. Numbers in parentheses indicate number of true k-mers lost at each step, based on reference.

| Data set                            | True 20-mers        | 20-mers in reads                      | 20-mers at C=20                   | % reads kept |
|-------------------------------------|---------------------|---------------------------------------|-----------------------------------|--------------|
| Simulated genome                    | 399,981             | 8,162,813                             | 3,052,007 (-2)                    | 19%          |
| Simulated mRNAseq<br>E. coli genome | 48,100<br>4,542,150 | 2,466,638 (-88)<br>175,627,381 (-152) | 1,087,916 (-9)<br>90,844,428 (-5) | 4.1%<br>11%  |
| Yeast mRNAseq                       | 10,631,882          | 224,847,659 (-683)                    | 10,625,416 (-6,469)               | 9.3%         |
| Mouse mRNAseq                       | 43,830,642          | 709,662,624 (-23,196)                 | 43,820,319 (-13,400)              | 26.4%        |

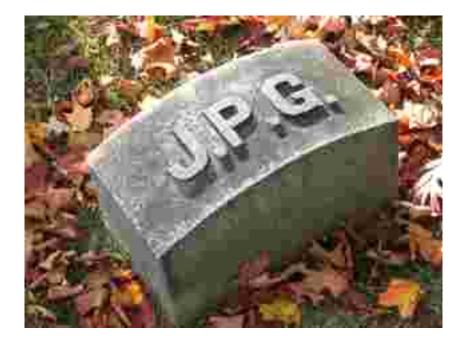
Table 2. Three-pass digital normalization removes most erroneous k-mers. Numbers in parentheses indicate number of true k-mers lost at each step, based on known reference.

| Data set                               | True 20-mers        | 20-mers in reads                      | 20-mers remaining                 | % reads kept          |
|----------------------------------------|---------------------|---------------------------------------|-----------------------------------|-----------------------|
| Simulated genome                       | 399,981             | 8,162,813                             | 453,588 (-4)                      | 5%                    |
| Simulated mRNAseq                      | 48,100<br>4,542,150 | 2,466,638 (-88)<br>175,627,381 (-152) | 182,855 (-351)<br>7,638,175 (-23) | $\frac{1.2\%}{2.1\%}$ |
| <i>E. coli</i> genome<br>Yeast mRNAseq | 10,631,882          | 224,847,659 ( <del>`</del> -683)      | 10,532,451 (-99,436)              | 2.1%                  |
| Mouse mRNAseq                          | 43,830,642          | 709,662,624 (-23,196)                 | 42,350,127 (-1,488,380)           | 7.1%                  |

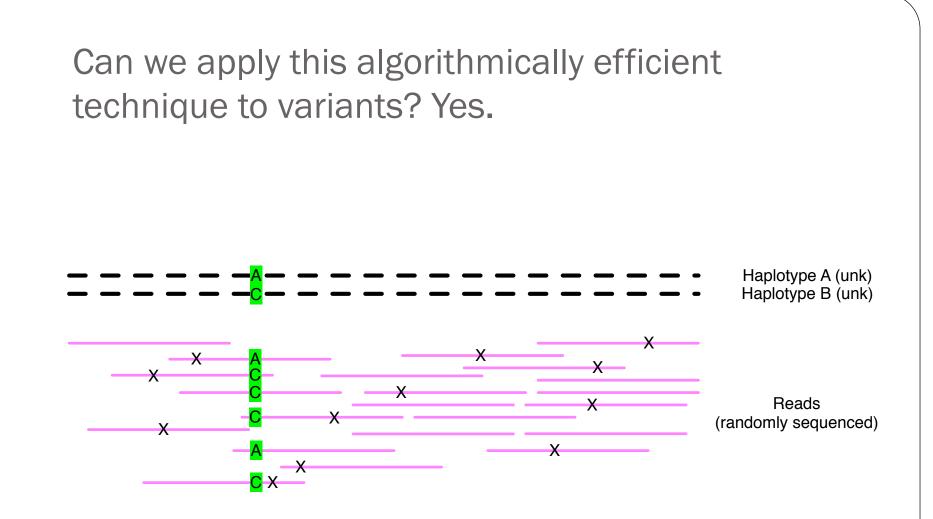












Single pass, *reference free*, tunable, streaming online variant calling.

#### Coverage is adjusted to retain signal

