# Phylogeny-based methods for analysing genomes and metagenomes 

Presented by Aaron Darling

## OTUs for ecology

Operational Taxonomic Unit: a grouping of similar sequences that can be treated as a single "species"

- Strengths
- Conceptually simple
- Mask effect of poor quality data
- Sequencing error
- in vitro recombination
- Weaknesses
- Limited resolution
- Logically inconsistent definition


## Logical inconsistency: OTUs at 97\% ID

Assume the true phylogeny:


A, $\mathrm{B}>97 \%$ identity
B, C > 97\% identity A and C not > 97\% ID

Possible valid OTUs:
$A B, C$ (with $A \& C$ centroids) $A, B C$ (with A \& C centroids)
ABC (with B centroid)

OTU pipelines will arbitrarily pick one of the three solutions.
Is this actually a problem??

## Limited resolution



## Same species, different genomes



Perna et al 2001 Nature, Welch et al 2002 PNAS

Three genomes, same species only $40 \%$ genes in common

## Phylogeny: an alternative path

Many ecological analyses can be based on phylogeny:

- Alpha diversity (e.g. species diversity)
- Beta diversity (e.g. comparison of species across samples)
- Community assembly


## So... what is a phylogeny, anyway?

## Imagine you are dating a paleontologist...



VS.


## Now imagine you've got dino DNA...

Let's try to reject the reviewer's phylogeny using DNA evidence!


VS.

>T_rex
ACC
>Stego
TCC
>Veloci
ACG
>Fluffy
ATCG

Multiple alignment (MUSCLE, FSA, etc)


T_rex
A-CC
Stego -TCC Veloci A-CG Fluffy ATCG

## How does DNA evolve?

- Simplest model: all nucleotides are equally common, all changes from one to another equally likely (Jukes and Cantor, 1969)


Rate of substitution is $u / 3$ per unit time
Expected number of changes on branch of length $t$ is (4/3)ut
Prob. of no change: e-(4/3)ut
Prob. of at least one change: $1-e^{-(4 / 3) u t}$
Prob. of e.g. A to $C$ is $\operatorname{Prob}(\mathrm{C} \mid \mathrm{A}, u, t)=(1 / 4)\left(1-e^{-(4 / 3) u t}\right)$

## Calculating the likelihood of data given a tree



## Steps:

1) Branch lengths
2) Finite-time transition probabilities
3) Leaf node partial probabilities

## Calculating the likelihood of data given a tree

Sites evolve independently. Calculate site likelihoods one-at-a-time


Matrix multiply site T_rex 1 :

|  | A | C | G | T |
| :---: | :---: | :---: | :---: | :---: |
| A | 0.91 | 0.03 | 0.03 | 0.03 |
| C | 0.03 | 0.91 | 0.03 | 0.03 |
| G | 0.03 | 0.03 | 0.91 | 0.03 |
| T | 0.03 | 0.03 | 0.03 | 0.91 |

Matrix multiply site Stego 1:

|  |  | A | C | G |
| :---: | :---: | :---: | :---: | :---: |
|  | T |  |  |  |
| A | 0.91 | 0.03 | 0.03 | 0.03 |
| C | 0.03 | 0.91 | 0.03 | 0.03 |
| G | 0.03 | 0.03 | 0.91 | 0.03 |
| T | 0.03 | 0.03 | 0.03 | 0.91 |

$$
=\text { ©.*@303 + 0*0.91 + 0*0.03 + 0*0.03 }
$$

$$
\text { ©.*©30 } 03+0 * 0.03+0 * 0.91+0 * 0.03
$$

©.(®30B + 0*0.03 + 0*0.03 + 0*0.91

Joint prob T_rex \& Stego:

$$
\begin{aligned}
& 1 \mathrm{~A} \\
& 1 \mathrm{C} \\
& 1 \mathrm{G} \\
& 1 \mathrm{~T}
\end{aligned}
$$

$$
\begin{aligned}
& 0.91^{*} 1
\end{aligned} \mathrm{~A}
$$

## Calculating the likelihood of data given a tree



Multiply by background nt probabilities:
$\mathrm{A}=0.25, \mathrm{C}=0.25, \mathrm{G}=0.25, \mathrm{~T}=0.25$

| A | . $614 * .25$ | . 025 *. 25 | . 009*. 25 | .009*. 25 |
| :---: | :---: | :---: | :---: | :---: |
| C | . $015 * .25$ | . 025*. 25 | . 548*. 25 | . 022 *. 25 |
| G | . $015 * .25$ | . 025*. 25 | . 009*. 25 | . 022 *. 25 |
| T | . $015 * .25$ | .689*. 25 | . 009*. 25 | .009*. 25 |
| A | . 154 | . 006 | . 002 | . 002 |
| C | . 004 | . 006 | . 137 | . 006 |
| G | . 004 | . 006 | . 002 | . 006 |
| T | . 004 | . 172 | . 002 | . 002 |
|  | . 166 | . 190 | . 143 | . 016 |

Tree likelihood is product of sites:
$L=.00007216$ $\log (L)=-9.536$

## Hypothesis testing with tree likelihoods

The likelihood ratio test


Take the ratio of likelihoods: $\frac{0.00007216}{0.000010348}=6.973328$

Reviewer's tree $\sim 7$ times less likely

What if you don't know the tree?

## Many methods for tree inference

- Parsimony, Distance, Maximum Likelihood, Bayesian
- Maximum Likelihood
- FastTree, RAxML, GARLI, PHYML, etc.
- Bayesian
- MrBayes, BEAST, PhyloBayes
- All based on Markov chain Monte Carlo (MCMC) algorithms

Number of unrooted tree topologies with $n$ tips:

$$
(2 n-3)!!=\frac{(2 n-3)!}{2^{n-2}(n-2)!}
$$

Bottom line: tree inference is hard

| trees with: |  |
| :--- | :---: |
| 4 tips | 3 |
| 6 tips | 105 |
| 8 tips | 20,395 |
| 10 tips | $2,027,025$ |
| 50 tips | $2.84 \times 10^{74}$ |

Estimated number of atoms in observable universe: $\sim 10^{80}$

## Using phylogenies for microbial ecology

- Building phylogeny from >1M sequences: impossible
- Alternative: place new sequences on reference tree
- RAxML-EPA: Berger et al 2011 Systematic biology
- pplacer: Matsen et al 2010 BMC Bioinformatics
- SEPP: Mirarab et al 2012 Pac. Symp. Biocomput.


A "fat" tree: showing number of placements on each branch


## Handling uncertainty

- Bayesian placement (pplacer)
- Calculate probability of new sequence on each branch
- pplacer can do this quickly, analytically (no MCMC)


A single sequence with uncertain placement

placement distribution viewed as a fat tree

Placement is starting to look better than OTUs

## Uncertainty in many sequences

- Combine placement distributions from all seqs in sample



## Using a placement distrib.: alpha diversity

- Phylogenetic diversity is sum length of branches covered


Sample PD is $0.01+0.01+0.01+0.01+0.01=0.05$

- BWPD: Balance-weighted phylogenetic diversity (Barker 2002)
- Intuition: weight the contribution each lineage makes to PD by its relative abundance
- Weights can reflect placement uncertainty


## $\mathrm{BWPD}_{\theta}$ : partial weighting for PD

- A 1-parameter function interpolates between PD and BWPD (Matsen \& McCoy 2013, PeerJ)
- When $\theta=0$ it is simply PD. $\theta=1$ it is BWPD.
- Matsen \& McCoy compare:
- OTU-based diversity metrics
- Phylogenetic diversity (Faith 1992)
- Phylogenetic entropy (Rao 1982, Warwick \& Clarke 1995)
- Phylogenetic quadratic entropy (Allen, Kon \& Bar-Yam 2009)
- $9 \mathrm{D}(\mathrm{T})$ (Chao, Chiu, Jost 2010)
- BWPD (Barker 2002)
- $\mathrm{BWPD}_{\theta}$
on 3 different microbial communities, measuring correlation of diversity \& phenotype
- Vaginal, oral, \& skin microbiomes
- $\theta=0.25 \& \theta=0.5$ have highest correlation with microbial community phenotypes
- OTU based diversity metrics have least correlation with phenotype


## Beta diversity: Edge Principal Component Analysis

- Edge PCA for exploratory data analysis (Matsen and Evans 2013)
- Given $E$ edges and $S$ samples:
- For each edge, calculate difference in placement mass on either side of edge
- Results in $E \times S$ matrix
- Calculate $E \times E$ covariance matrix
- Calculate eigenvectors, eigenvalues of covariance matrix
- Eigenvector: each value indicates how "important" an edge is in explaining differences among the $S$ samples

Example calculating a matrix entry for an edge:
This edge gets 5-2=3


## Edge PCA: visually

(full tree not shown)


Branches are thickened \& colored according to the amount they shift the sample along an axis

Matsen \& Evans 2012 PLoS ONE

## Edge PCA and the vagina



- Samples colored according to Nugent score of bacterial vaginosis: blue $\rightarrow$ healthy, red $\rightarrow$ sick (Matsen \& Evans 2012)


## How to do it?

1. Find reference sequences
2. Align reference sequences
3. Infer reference phylogeny
4. For each sample:
4.1. Add sequences to alignment
4.2. Place sequences on tree
5. Alpha \& Beta diversity analysis

Each step is a unix command

## PhyloSift: genome and metagenome phylogeny

Treangen et al 2013.


Illumina reads placed onto reference gene family trees

- 40 "elite" families: universal among ~4000 Bact, Arch, Euk genomes (Lang et al 2013, Wu et al 2013)
- 350,000 "extended" families: SFAMs (Sharpton et al 2012)
- Amino-acid and nucleotide alignments+phylogenies


## Using phylosift

Download phylosift: phylosift.wordpress.org
bin/phylosift all --output=hmp tutorial_data/HMP_1.fastq.gz
open hmp/HMP_1.fastq.gz.html
Raw illumina data
Shows taxonomic plot (Mac)
bin/guppy fpd --theta $0.25,0.5 \mathrm{hmp} / * . g z . j p l a c e$
Alpha diversity
bin/guppy epca --prefix pca hmp/*.gz.jplace
Beta diversity (min 3 samples)

More examples at: phylosift.wordpress.org


## QIIME vs. PhyloSift


age in months:


Phylosift on proteins \& 16S produces similar results to QIIME on amplicon data

Data from Yatsunenko et al 2012. 16S amplicon \& metagenomes from same samples

## Phylogenetic alpha diversity

Data from Yatsunenko et al 2012

- Growth in PD over life
- BWPD is biphasic



## PhyloSift compute requirements

- You don't need a huge computer to run PhyloSift

phylosift and major life events

On December $3^{\text {rd }} 2010$, Kai and his microbiome were born


## Lots of nappies, lots of sampling

Kai Darling born $3^{\text {rd }}$ Dec. 2010 in California, flew to Sydney 3.5 weeks later


March $1^{\text {st }} 2011$ : a lot of poop in tubes and no idea how to get it through USA quarantine


Tiffanie Nelson at UNSW:
Extracted DNA with PowerSoil kits, mailed to USA

## Metagenomics on a shoestring budget*

"Homebrew" Illumina Nextera library prep protocol:
$\begin{array}{llll}\text { Quantitate } & \text { Normalize } & \text { Pre-Barcoded } & \text { Denature Tn5 } \\ \text { gDNA (qubit) } & 2.5 \text { ng in 5uL } & \text { Tagmentation } & \text { Heat 70C + SDS }\end{array}$


Goal: metagenomics as easy as 16 S amplicon studies
Strategy: Transposon-catalyzed library prep.
Express \& purify Tn5 from pWH1891. Custom adapters. 2.5ng input Pool samples as early as possible.

Results: Sequenced 45 time points in HiSeq 2000 lane ~ \$1 / library reagent costs, 100s of libraries in a day, NO ROBOTS

## PhyloSift view of fecal microbiome at three weeks age



- Tree-browsing of read placement mass (via archaeopteryx)
- Taxonomic summary plots in Krona (Ondov et al 2011)


## Alpha diversity of gut communities vs. time

- Standard \& balance-weighted PD (McCoy \& Matsen, 2013)
- Phylogenetic diversity (PD) decreases?!



Pearson's cor: -0.44, p = 0.005 ( $p<10^{-6}$ without formula samples)

Pearson's cor: $0.21, p=0.18$
( $p=0.0071 \mathrm{w} / \mathrm{o}$ formula)

## Phylogenetic "Edge PCA" on infant fecal microbiome

Edge PCA: explain variation in community structure among many samples

## Matsen \& Evans 2013 PLoS ONE Infant gut timeseries



Up: Bacteroides, Down: Bifidobacterium

## Formula-fed samples within one day

A day on formula


Up: Bacteroides, Down: Bifidobacterium

Thanks!

