
The welcome lecture

Challenge #1:

Most biologists still don’t know much
about computational science.

•  Among many biologists, there is a general fear or
skepticism of computers.

•  This leads to shallow thinking about computational
science.

Challenge #2:

Most computational scientists still don’t
know much about biology.

•  Extant computational solutions may not use appropriate
heuristics, or default parameters.

•  “It works on my data…”, but their data != yours!

•  Solutions/programs may not be couched in the right
terms for the biology, or with proper appreciation for
biological complexity.

Challenge #3:

Both biology and computational science
are deep, complex fields of study,

inhabited by extremely smart people!

•  None of this is easy, on any side of things.

•  If it were easy, they wouldn’t need people as smart as all
of us to do it, right??

•  A two week course can’t possible teach you everything.

Challenge #4:

Sequencing technology is changing very
fast.

•  We don’t understand its limitations or biases very
well.

•  The software and compute infrastructure lags behind
volume of data & type of data.

This is not the #1 problem you
will face with bioinformatics.

Here is the #1 problem:

How do you know if your computational answer is
right or wrong?

This is not the #1 problem you
will face with bioinformatics.

Here is the #1 problem:

How do you know if your computational answer is
right or wrong?

If you can’t answer this question, then what’s the
point of doing the computation?

Controls

•  Just as with experiments, you can put negative and
positive controls in your bioinformatics.

•  e.g. with BLAST,
•  Do you see expected matches with the parameters and

database you’re using?

•  Positive controls are often easier than negative, in
“discovery” science…

Internal controls

•  Use molecules and sequences for which you have
expectations.

•  “I know this gene comes up, based on qPCR. I
expect to see it in my mRNAseq.”

•  Or, “human? I didn’t expect to see human!”

External controls & replication

•  Does the whole process work?

•  “I can reproduce what this other person/lab did,
with their data, when I use my own software.”

•  This is much more rarely done…

Black box nature of algorithms

•  When you listen to a computational biologist
explain their clever algorithm…

•  …it’s a big mistake to think that they necessarily
know what’s going on.

•  Software is full of bugs and unintended
consequences.

Pipelines
•  Each step can be understood,

and tested/controlled
individually.

•  Each step is re-usable! Just
need to figure out input/
output formats.

•  Automate, automate,
automate.

The opportunity:

•  The sequence is here! As you know!

•  “In the land of the blind, the one eyed is king.” --
those prepared to think about how to use sequencing
technology to answer their question will have a
substantial leg up.

•  Who knows? Some of you might even like this mix!

Our goals

•  Provide a safe & welcoming place to experiment.

•  Lots and lots of help (in the form of Tas)

•  Provide lots of data sets, tools, scripts.

•  Research specific help as possible.

Our requirements of you

•  Nothing.

•  This is a requirements free zone.

•  You can safely skip the entire course…

Our expectations

•  Questions!

•  Ask for help when you need it!

•  Tolerance (in both directions)

Our hopes

•  Enthusiasm!

•  Engagement!

Daily schedule (tentative)

•  7-8: breakfast. They mean it. /cc Frona’s Bakery

•  9:15am – lecture

•  10:30am – tutorial 1

•  12-1pm - lunch

•  1:15pm – tutorial 2

•  3pm – free time!

•  5-6:30 - dinner

•  7pm – tutorial/lecture/etc

Weekly schedule – tentative
wk1

•  Tuesday – BLAST, sequence quality foo

•  Wed – mapping & assembly; genomic visualization

•  Thursday – Genomic intervals & bioinfo survival

•  Friday – SNP calling, experimental design

•  Saturday – pipelines & protocols for mRNAseq

Dramatis personae

•  Titus Brown (that’s me)

•  Ian Dworkin -- co-instructor

•  Istvan Albert – co-instructor

•  Cody Nicks – go-fer and aide-de-camp

Dramatis personae

•  Amanda Charbonneau– TA and cruise director

•  Elijah Lowe– TA

•  Will Pitchers – TA

•  Aswathy Sebastian - TA

•  Qingpeng Zhang – TA.

Dramatis personae

Other instructors:

Daniel Standage, Meg Staton, Chris Chandler, Adina
Howe, Aaron Darling, Matt MacManes.

Written rules

•  No night-swimming without a buddy.

•  I mean it.

Code of Conduct

http://angus.readthedocs.org/en/2014/code-of-
conduct.html

tl;dr? Don’t be a jerk.

I will post Judi Brown Clark’s contact information on the
wall shortly.

Note: this is not because of known prior problems, ICYW.

Food and drink

•  Anything group-intended can be purchased by Cody.
Please write it down on the list in the back.

•  Cody can also drive you to the market; he’ll probably
go every two or three days.

•  Please don’t ask Cody to spot you $$; ask me.

Games and location.

•  We have volleyball, frisbee, frisbee golf, boche
ball…?

•  Also cards. Other board games needed?

•  There’s good places to run, to swim, to hike, to bike,
and to fish.

•  We also have laundry and weight room (?)

Unwritten rules

Framing the approach

1.  How does all this stuff work, generally?

2.  Can we automate things and/or do them more
efficiently?

How does this stuff work?

•  Typically, you need to run multiple different
programs in sequence.

•  Each program takes in data, in files; and
outputs data, in files.

•  (Some programs also produce pretty pictures
via the Web.)

Automation & computational
efficiency matter

•  You’ll learn to run lots of different programs here.

•  We’ll run into some practical problems:
•  Some programs take a long time to run.
•  Some programs take many different parameters; which

are best?
•  Some programs don’t finish on “cheap” hardware.

How do we run many long-running programs? How do
we remember what we did? How do we get our

programs to finish?

“Heuristics”

•  What do computers do when the answer is either
really, really hard to compute exactly, or actually
impossible?

•  They approximate! Or guess!

•  The term “heuristic” refers to a guess, or shortcut
procedure, that usually returns a pretty good answer.

Often explicit or implicit tradeoffs between
compute “amount” and quality of result

http://www.infernodevelopment.com/how-
computer-chess-engines-think-minimax-tree

This kind of issue comes up a
lot.

•  Mapping.

•  Assembly.

•  Statistics (Monte Carlo and resampling methods).

•  Simulations.

•  More generally, most “interesting” algorithms involve
approximations and shortcuts. When are they
(in)appropriate for your task?

What are the limits of data +
compute?

Mappers will ignore some fraction of reads due to errors.

Pyrkosz et al., unpub.

Does choice of mapper
matter?

Reference completeness matters more!

Pyrkosz et al., unpub.

Real problem? Our data can’t
uniquely specify solution!

Here, there is no direct way to know if last exon is connected to first exon.

Pyrkosz et al., unpub.

Concluding thoughts

•  There’s what you can do today, computationally,
with existing programs. This is often limited by our
time, experience, etc.

•  There’s what you could, in theory, do with the data
you had. This is the upper limit on your accuracy.

•  Figuring out the difference is one of the main
reasons you’re here :)

Any questions or comments?

Process and materials!

•  Use the ngs-2014@lists.idyll.org list to organize
things!

•  Twitter: #ngs2014; I’m @ctitusbrown

•  Facebook group?

Use the stickies, Luke…

