Mapping short reads




Locate reads in ref genome
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SNP calling — which variants are
Teal™?
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Note: long v short

* Mapping long reads is a different problem from mapping
short reads.

* This is for two reasons, both of them pragmatic/practical:

The volume of data has traditionally been much less: 1m 454
reads vs 200m lllumina

Long reads are much more likely to have insertions or deletions in
them




Long reads: BLAST vs ‘blat’

* BLAST is not the right tool.

BLAST requires that a query sequence contains the same 11-mer
as a database sequence before it attempts further alignment.

Any given 11-mer occurs only once in 2m sequences, so this
filters out many database sequences quickly.

You can also store the list of all possible 11-mers in memory
easily (~¥2mb), making it possible to keep track of everything

quickly.
* ‘blat’ does the same thing as BLAST, but is faster because it
uses longer k-mers.




How alignment works, and why
indels are the devil

There are many alignment strategies, but most work like this:

GCGGAGatggac GCGGAGatggac
BRI => |1 |x.....
GCGGAGgcggac GCGGAGgcggac

At each base, try extending alignment; is total score still above
threshold?




How alignment works, and why
indels are the devil

There are many alignment strategies, but most work like this:

GCGGAGatggac GCGGAGatggac
BRI => ||| |xx....
GCGGAGgcggac GCGGAGgcggac

Each mismatch costs.




How alignment works, and why

indels are the devil
Insertions/deletions introduce lots more ambiguity:

GCGGAGagaccaacc GCGGAGag-accaacc

EEEEE => [
GCGGAGggaaccacc GCGGAGggaacc-acc

GCGGAGagaccaacc GCGGAGaga-ccaacc

EEEEE => [
GCGGAGggaaccacc GCGGAGggaacca-cc




Mapping short reads, again

What’s hard about mapping

Some mapping programs

Decisions to be made

Color space issues




Mapping, defined

Exhibit A: 20m+ reads from genome/transcriptome.

Exhibit B: related genome/transcriptome, aka “the reference”

Goal: assign all reads to location(s) within reference.

Req’d for resequencing, ChlP-seq, and mRNAseq




Want global, not local,
alignment

* You do not want matches within the read, like BLAST would
produce.

/ \

* Do not use BLAST!




Mapping is “pleasantly
parallel”

* Goal is to assign each individual read to location(s) within the
genome.

* So, you can map each read separately.




What makes mapping challenging?

* Volume of data

* Garbage reads

* Errors in reads, and quality scores

* Repeat elements and multicopy sequence
* SNPs/SNVs

* Indels

* Splicing (transcriptome)




Volume of data

* Size of reference genome is not a problem: you
can load essentially any genome into memory
(~3 gb).

* However, doing any complicated process 20m
times is generally going to require optimization!
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Errors in reads

When mapping, a mismatch is not
necessarily “real”.
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Rule of thumb: anything that varies by position within read is NOT REAL!




Errors in reads

* Quality scores are based on Sanger sequencing-
style quality scores: per base.

* But 454 & lon/Proton data are subject to
different biases than lllumina, and the biases are
not necessarily base-by-base (think:
homopolymer runs)




Repeat/multi-copy elements

* Multi-copy sequence makes it impossible to map all reads
uniquely.

* Repeats are particularly bad, because there are (a) lots of
them and (b) they vary in sequence. They therefore may
“attract” reads depending on what optimizations/heuristics

you use.




SNP/SNVs

Genuine mismatches between reference and sequence do exist, of
course.

Polymorphism
Diploidy
Population studies

You want to map these reads!

Fast heuristic approaches exist, based on fuzzy matching.

However, they are still biased towards mapping exact matches.
This can be a problem for allelotyping and population studies.
Likit will discuss next week.




Indels

* Remember, they are the devil:
* Complicate mapping heuristics

* Complicate statistics




Indels: ambiguity & decisions...

TGACGATATGGCGATGGACTGGACG

IXELTETTEETE I b T
TcACGATATGGCGETGaA-TGGACG

TGACGATATGGCGATGGACTGGACG

IXELTETTEETE I I
TcACGATATGGCGET-GAaTGGACG




Splice sites

* If you are mapping transcriptome reads to the genome,
your reference sequence is different from your source
sequence!

* This is a problem if you don’t have a really good
annotation!

* Main technique: try to map across splice sites, build new
exon models.

* Another technique: assembly.




Two specific mapping
programs
* Bowtie
* BWA
Both open source.
BWA is widely used now, so we’ll use that for examples.

(There are many more, too.)




Bowtiel

* Not indel-capable.

* Designed for:
* Many reads have one good, valid alignment
* Many reads are high quality
* Small number of alignments/read
a.k.a. “sweet spot” :)




BWA

* Uses similar strategy to Bowtie, but does gapped alignment.
* Newest, hottest tool.

* Written by the Mapping God, Heng Li
(Istvan Albert’s scientific crush)




Decisions to be made by you

* How many mismatches to allow?
Vary depending on biology & completeness of reference genome

* Report how many matches?
Are you interested in multiple matches?

* Require best match, or first/any that fit criteria?
It can be much faster to find first match that fits your criteria.

All of these decisions affect your results and how you treat your
data.




Mapping best done on entire
reference

* May be tempted to optimize by doing mapping to one chr,
etc. “just to see what happens”

* Don’t.

* Simple reason: if you allow mismatches, then many of your
reads will match erroneously to what’s in the chr you chose.




Look at your mapping

Just like statistics, always look at your “raw data” ©

We’'ll do some of that today.




Two considerations in
mapping

* Building an index
* Prepares your “reference”

* (Not really a big deal for single microbial
genomes)




Indexing — e.g. BLAST

BLASTN filters sequences for exact matches between “words” of
length 11:

GAGGGTATGACGATATGGCGATGGAC

LI PPl x] | x
GACGGTATCACGATATGGCGET-Gag

What the ‘formatdb’ command does (see Tuesday’s first
tutorial) is build an index (“index”) sequences by their 11-base
word content —a “reverse index” of sorts.




Indexing — e.g. BLAST

What the ‘formatdb’ command does (see Tuesday’s BLAST
tutorial) is build an index (“index”) sequences by their 11-base
word content —a “reverse index” of sorts.

Since this index only needs to be built once for each reference,
it can be slower to build — what matters to most people is
mapping speed.

All short-read mappers have an indexing step.




Speed of indexing & mapping.
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Simulations => understanding
mappers

Table 1. Read mapping errors for single (SE) and paired end (PE) reads from random
(simulated) and real transcriptomes

Organism Num Trans | Error || TP (d) | FP (d) || TP (u) | FP (u) | TP (m) | FP (m)
Random (SE) 5000 1% 92% 0% 92% 0% 92% 0%
Mouse (SE) 5000 1% || 87% | 5% 81% | 0% 92% 12%
Random (PE) 5000 1% 85% 0% 85% 0% 85% 0%
Mouse (PE) 5000 1% 81% 4% 7% 0% 85% 9%

Mapping parameters are default (d), unique (u), and multimap (m). True positives are reads that were
successfully mapped to their originating transcript. False positives are reads that were mapped to other
transcripts (even if the read was an exact match to the alternate transcript).

Mappers will ignore some fraction of reads due to errors.

Pyrkosz et al., unpub.; http://arxiv.org/abs/1303.2411




Does choice of mapper matter?
Not in our experience.

Reference completeness/quality matters more!
nparison of Three Common Mapping Programs on the Same Chicke:

{um Trans || Bowtie TP (d) | FP (d) || BWA TP (d) | FP (d) | SOAP2 TP
100% 78% 22% 78% 20% 78%
90% 72% 21% 72% 20% 72%
80% 65% 22% 65% 21% 65%
70% 58% 22% 58% 21% 58%
60% 51% 20% 50% 19% 51%
50% 44% 19% 44% 18% 44%
40% 36% 16% 37% 16% 36%
30% 27% 13% 27% 13% 27%
20% 19% 11% 19% 11% 19%
10% 9% 5% 9% 6% 9%

Bowtie, BWA, and SOAP2 mapping programs on the same simulated reads fo
ts (triplicate and averaged) with decreasing completeness of the reference tran
lent results.

Pyrkosz et al., unpub.; http://arxiv.org/abs/1303.2411




Misc points

Transcriptomes and bacterial genomes have very few
repeats...

* ...but for transcriptomes, you need to think about shared
exons.

* For genotyping/association studies/ASE, you may not care
about indels too much.

* Variant calling is less sensitive to coverage than assembly (20x
vs 100x)




Using quality scores?

* Bowtie uses quality scores; bwa does not.

* This means that bowtie can align some things in FASTQ that
cannot be aligned in FASTA.

See: http://www.homolog.us/blogs/blog/2012/02/28/bowtie-
alighment-with-and-without-quality-score/




Comparative performance/SE
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Comparative performance/PE
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Part Il
De novo Assembly




Assembly vs mapping

* No reference needed, for assembly!
De novo genomes, transcriptomes...

* But:
Scales poorly; need a much bigger computer.
Biology gets in the way (repeats!)
Need higher coverage

° But but:

Often your reference isn’t that great, so assembly may actually be
the best way to go.




Assembly

It was the best of times, it was the wor
, it was the worst of times, it was the
isdom, it was the age of foolishness
mes, it was the age of wisdom, it was th

\ 4

It was the best of times, it was the worst of times, it was
the age of wisdom, it was the age of foolishness

...but for lots and lots of fragments!




Assemble based on word overlaps:

the quick brown fox jumped
jumped over the lazy dog
the quick brown fox jumped over the lazy dog

Repeats do cause problems:

my chemical romance: na na na
na na na, batman!




Shotgun sequencing & assembly

Randomly fragment & sequence from DNA;
reassemble computationally.

contig 1 contig 2
consensus [
-— =t
» »> - -
— - e
fragments —

Y
A&

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCOCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT

UMD assembly primer (cbcb.umd.edu




Assembly - no subdivision!

Assembly is inherently an all by all process. There is no good
way to subdivide the reads without potentially missing a key
connection




Short-read assembly

» Short-read assembly is problematic

* Relies on very deep coverage, ruthless read trimming, paired
ends.

contig 1 contig 2
consensus [
-— -
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fragments e
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4

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCOCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT

UMD assembly primer (cbcb.umd.



Short read lengths are hard.
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Figure 3. Percentage of the E.coli genome covered by contigs greater than a
threshold length as a function of read length.

Whiteford et al., Nuc. Acid Res, 20




Four main challenges for de novo
sequencing.

Repeats.
* Low coverage.
Errors

These introduce breaks in the
construction of contigs.

Variation in coverage — transcriptomes and metagenomes, as
well as amplified genomic.

This challenges the assembler to distinguish between erroneous
connections (e.g. repeats) and real connections.




Repeats

* Overlaps don’t place sequences uniquely when there are
repeats present.

contig 1 contig 2
consensus [
-— -
» > - -
- -— _
fragments -

Y
4

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCOCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT

UMD assembly primer (cbcb.umd.




Coverage

Easy calculation:
(# reads x avg read length) / genome size
So, for haploid human genome:

30m reads x 100 bp =3 bn




Coverage

* “1x” doesn’t mean every DNA sequence is read once.
* It means that, if sampling were systematic, it would be.
* Sampling isn’t systematic, it’'s random!




Actual coverage varies widely from
the average, for low avg coverage

10x coverage of 1mb - distribution
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Two basic assembly
approaches

* Overlap/layout/consensus
* De Bruijn k-mer graphs

The former is used for long reads, esp all Sanger-based
assemblies. The latter is used because of memory efficiency.




Overlap/layout/consensus

Essentially,

1. Calculate all overlaps

2. Cluster based on overlap.

3. Do a multiple sequence alignment

contig 1 contig 2
consensus [
B —— -
—_— — - -
- -~ —_—
fragments —
- f S —

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCOCCTGCTTATCAACCGATCCCCCGCTACCTICTACAGCCATCATIT

UMD assembly primer (cbcb.umd.




K-mers

Break reads (of any length) down into multiple overlapping
words of fixed length k.

ATGGACCAGATGACAC (k=12) =>

ATGGACCAGATG
TGGACCAGATGA
GGACCAGATGAC
GACCAGATGACA
ACCAGATGACAC




K-mers — what k to use?

Table TA. Mean number of false placements of K-mers on the
genome

Escherichia Saccharomyces Arabidopsis Homo

K coli cerevisiae thaliana sapiens
200 0.063 0.26 0.053 0.18
160 0.068 0.31 0.064 0.49
120 0.074 0.39 0.086 1.7

80 0.082 0.49 0.15 7.2

60 0.088 0.58 0.27 18

50 0.091 0.63 0.39 32

40 0.095 0.69 0.65 78

30 0.11 0.77 1.5 330

20 0.15 1.0 5.7 2100

10 18 63.8 880 40,000

Butler et al.,, Genome Res,



K-mers — what k to use?

Table 1B.

genome

Fraction of K-mers having a unique placement on the

K E. coli (%) S. cerevisiae (%) A. thaliana (%) H. sapiens (%)

200
160
120
80
60
50
40
30
20
10

98.5
98.3
98.2
98.0
97.8
97.7
97.6
97.4
97.0

0.0

95.9
95.6
95.2
94.7
94.4
94.2
93.9
93.5
92.9

0.0

97.4
97.1
96.6
95.4
94.4
93.4
92.2
90.4
86.5

0.0

97.6
97.2
96.6
95.2
93.1
91.2
88.3
83.4
71.8

0.0

Butler et al., Genome Res, 2



Big genomes are problematic

Coverage by
Genome Reference Component Edge Ambiguities Coverage perfect edges
Species Ploidy size (kb) N50 (kb) N50 (kb) NSO (kb) per megabase (%) 210 kb (%)
C. jejuni 1 1800 1800 1800 1800 0.0 100.0 100.0
E. coli 1 4600 4600 4600 4600 0.0 100.0 100.0
B. thailandensis 1 6700 3800 1800 890 2.7 99.8 99.5
E. gossypii 1 8700 1500 1500 890 2.6 100.0 99.9
S. cerevisiae 1 12,000 920 810 290 28.7 98.7 94.9
S. pombe 1 13,000 4500 1400 500 19.1 98.8 97.5
P. stipitis 1 15,000 1800 200 700 8.6 97.9 96.3
C. neoformans 1 19,000 1400 810 770 4.5 96.4 93.4
Y. lipolytica 1 21,000 3600 2200 290 6.2 99.1 98.6
Neurospora crassa 1 39,000 660 640 90 17.4 97.0 92.5
H. sapiens region 2 10,000 10,000 490 2 68.2 97.3

Butler et al., Genome Res,




Choice of k affects apparent coverage

# of bases or k-mers with that coverage

1000«' — k=20 counts
— k=26 counts
— k=32 counts
8001
—— per-base coverage
600}
400
200}
%

50 100
Coverage

150




K-mer graphs - overlaps

aaccgg
(a) ccggtt

(b) aacc * accg * ccgg . cggt | ;ggtt

(C) alac cg

5
T

J.R. Miller et al. / Genomics (2




K-mer graph (k=14)

| ATCCAGTAGGACCACTTGACAGGCGA l

(recseacsoon DD R

Each node represents a 14-mer;
Links between each node are 13-mer overlaps




K-mer graph (k=14)

' ATCCAGTAGGACCACTTGACAGGCGA '
l ATCCAGTAGGACCACTTGACGCGGAT I

( ATCCAGTAGGACCA }—»'» @»
-0

Branches in the graph represent partially overlapping sequences.




K-mer graph (k=14)

| ATCCAGTAGGACCACTTGACAGGCGA l
| ATCCAGTAGGACCACTTGACGGGCGA l

(rocromaaseen HEHD-EHOHE - HA-EHEHEHEE
(3050302050

Single nucleotide variations cause long branches



K-mer graph (k=14)
l ATCCAGTAGGACCACTTGACAGGCGATTGACG '

l ATCCAGTAGGACCAGTTGACAGGCGATTGACG '

. 028,0,0,8,0,0GN
(ATccAGTAGGACCA 8- 0RO () G

Single nucleotide variations cause long branches;
They don’t rejoin quickly.




Choice of k affects apparent coverage

# of bases or k-mers with that coverage

1000«' — k=20 counts
— k=26 counts
— k=32 counts
8001
—— per-base coverage
600}
400
200}
%

50 100
Coverage

150




K-mer graphs - branching

CCGGAG

aaccgg
(a) ccggtt

(b) ‘ aacc _"ﬂi_'{ ccgg — cggt — ggtt \
\ Which path?
CGGA —»| GGAG
(c) aHcFs

For decisions about which paths etc, biology-based heuristics come in
play as well.

=

T




K-mer graph complexity - spur

(a) -<:__.

L

Can be caused by error at the end of some overlapping reads, or
low coverage

J.R. Miller et al. / Genomics (2




K-mer graph complexity - bubble

LI I

Caused by sequencing error and true polymorphism / polyploidy
in sample.

Multiple par

J.R. Miller et al. / Genomics (2




K-mer graph complexity - “frayed
rope”

o i

LUlIvEl g, Ll uivei gillyg pdtiils.

Caused by repetitive sequences.

J.R. Miller et al. / Genomics (2




Resolving graph complexity

Primarily heuristic (approximate) approaches.

Detecting complex graph structures can generally not be done
efficiently.

Much of the divergence in functionality of new assemblers
comes from this.

Three examples:




Read threading

(before) (after)

Single read spans k-mer graph => extract the single-read path.

J.R. Miller et al. / Genomics (2010)




Mate threading

< e
S

Resolve “frayed-rope” pattern caused by repeats, by separating
paths based on mate-pair reads.

J.R. Miller et al. / Genomics (2010)




Path following

i L —— B mm omm omm
- >-
It

- e

Reject inconsistent paths based on mate-pair reads and insert
Size.

J.R. Miller et al. / Genomics (2010)




More assembly issues

Many parameters to optimize!

* RNAseq has variation in copy number; naive assemblers can
treat this as repetitive and eliminate it.

* Some assemblers require gobs of memory (4 lanes, 60m reads
=>~ 150gb RAM)

* How do we evaluate assemblies?
What’s the best assembler?




K-mer based assemblers scale
poorly

Why do big data sets require big machines??

I”

Memory usage ~ “real” variation + number of errors

Number of errors ~ size of data set

GCGTCAGGTAGCAGACCACCGCCATGGCGACGATG
GCGTCAGGTAGGAGACCACCGTCATGGCGACGATG
GCGTTAGGTAGGAGACCACCGCCATGGCGACGATG

GCGTCAGGTAGGAGACCGCCGCCATGGCGACGATG




De Bruijn graphs scale poorly with erroneous da
#Edges

N

Total edges

Error edge

True edges

#Réads

Conway T C, Bromage A J Bioinformatics 2011;27:479-486

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, B f m t
please email: journals.permissions@oup.com I O I n O r a I CS



Co-assembly is important for
sensitivity

Shared low-level
transcripts may
not reach the
threshold for

assembly.

4,004

Intestine

Combined
+3,230




[s your assembly good?

For genomes, N50 is an OK measure:
“50% or more of the genome is in contigs > this number”

That assumes your contigs are correct...!

What about mRNA and metagenomes??

Truly reference-free assembly is hard to evaluate.




How do you compare assemblies?

overlap




What's the best assembler?

Hiniii.,

| BCM* BCM ALLP NEWB SOAP** MERAC CBCB SOAP* SOAP i Fis i i

-10

-15

Cumulative Z-score from ranking metrics

-20

B?@dﬂam—et—a'l—ASSEfrrbla‘thon%...—
http://arxiv.org/pdf/1301.5406v1.pdf




What's the best assembler?

6 .
4 -
2 .
7 BCM CSHL CSHL* SYM ALLP SGA SOAP* MERAC ABYSS C¢TD*
2
4
6

Bradnam et al., Assemblathon 2: W
http://arxiv. org/pdf/1301 5406v1 pdf

Cumulative Z-score from ranking metrics




What's the best assembler?
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http://arxiv. org/pdf/1301 5406v1 pdf




Note: the teams mostly used
multiple software packages

BCM-HGSC BCM 2 1 1 4+1+PpP' Baylor College of Medicine Human | SeqPrep, KmerFreq,
Genome Sequencing Center Quake, BWA,
Newbler, ALLPATHS-
LG, Atlas-Link, Atlas-
Gapkill, Phrap,
CrossMatch, Velvet,
BLAST, and BLASR




Answer: it depends

* Different assemblers perform differently, depending on
Repeat content
Heterozygosity

* Generally the results are very good (est completeness, etc.)
but different between different assemblers (!)

* There Is No One Answer.




CEGMA

imated completeness:

Est

100%

Alquiesse ul Juasaid s939 aqissod |je Jo %

Each assembler lost different ~5% CEGs



Practical issues

Do you have enough memory?
* Trim vs use quality scores?

When is your assembly as good as it gets?

Paired-end vs longer reads?

More data is not necessarily better, if it introduces more
errors.




Practical issues

* Many bacterial genomes can be completely assembled with a
combination of PacBio and Illumina.

* As soon as repeats, heterozygosity, and GC variation enter the
picture, all bets are off (eukaryotes are trouble!)




Mapping & assembly

* Assembly and mapping (and variations thereof) are the two
basic approaches used to deal with next-gen sequencing data.

* Go forth! Map! Assemble!




