RNA-seq part l:
guantification and models for
assessing differential expression



What we will cover today

Why we use count data as input

ntroducing a bit of probability to why many
RNA Differential analysis tools use a negative
oinomial.

Why do care about variance/over-dispersion
so much.

How do we estimate over-dispersion with
small sample sizes (and why edgeR and DGE
give different results).




Counting

e One of the most difficult issues has been how
to count reads.



Counting

We are interested in transcript abundance.

But we need to take into account a number of
things.

How many reads in the sample.
Length of transcripts

GC content and sequencing bias (influencing
counts of transcripts within a sample).



Seemingly sensible Counting (but
ultimately not so useful).

 RPKM (reads aligned per kilobase of exon per
million reads mapped) — Mortazavi et al 2008

 FPKM (fragments per kilobase of exon per
million fragments mapped). Same idea for
paired end sequencing.



Take home message:
Actual counts should be used as input
for differential expression analysis, not
(pre)scaled measures.



RPKM

r, X 10°

ﬂng

RPKM,, =

R = total # mapped reads from that sample
R = E 7,
geqG

fl, = feature length (i.e. transcript length)



Problems with RPKM

* RPKM is not a consistent measure of
expression abundance (or relative molar

concentration).

e See
— http://blog.nextgenetics.net/?e=51

— Wagner et al 2012 Measurement of mMRNA abundance using RNA-seq data: RPKM measure is
inconsistent among samples. Theory Biosci




How about Transcripts per million
(TPM)

r. x1lx10°
TMP, ==
fl, x T
R = total # mapped reads from that sample
r, x 1l
T — 8

rl = read length

While TPM is in general more (statistically) consistent, it is still generally not appropriate.



Normalization (for DE) can be much
more complicated in practice
* Why might scaling by total number of reads

(sequencing depth) be a misleading quantity
to scale by?



Normalization (for DE) can be much
more complicated in practice
* Scaling by total mapped reads (sequencing

depth) can be substantially influenced by the
small proportion of highly expressed genes.

(What might happen?)

* A number of alternatives have been proposed
and used (i.e. using quantile normalization)

Bullard, J. H., Purdom, E., Hansen, K. D., & Dudoit, S. (2010). Evaluation of statistical methods for normalization and
differential expression in mRNA-Seq experiments. BMC Bioinformatics, 11, 94. doi:10.1186/1471-2105-11-94



Counting (and normalizing) in practice

* |n practice, we do not want to “pre-scale” our
data as is done in F/R-PKM or TPM.

* |nstead we are far better off using a model
pased approach for normalizing for read-
ength or library size in the data modeling per
se.

 This is far more flexible.



Take home message:
Actual counts should be used as input
for differential expression analysis, not
(pre)scaled measures.



A bit of background on probability.

 Fundamentally our observed measure of expression
are the counts of reads.

 Depending upon the data modeling framework we
wish to use, we need to account for this, as these are
not necessarily approximated well by normal
(Gaussian) distributions that are used for “standard”
linear models like t-tests, ANOVA, regression.

* Thisis not a problem at all, as it is easy to model data
coming from other distributions, and is widely available
in stats packages and programming languages alike.



Probability

Probability Density vs. Mass function
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Probability Mass function (For
discrete distributions, like read
counts)

Poisson distribution , lambda=10

° Ll |l P(13] Poisson (A=10)) =0.073
N 1 ‘/Height represents the
g o __ probability at that point
£ ° _ (integer).
3 H H “Area” of the box has no
particular meaning.

P(integer) 20
P(non-integers) = 0.



Normal density function
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Height at x= 13 is 0.0799
This is not the probability at x=13, but the
density.

i.e. f(13) = 0.0799, where f(x) is the normal
distribution.

P(x=13| N(mean=10,sd=3.3))=0

WHY?



Normal density function
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We can define the probability in the
interval
10<x<15

P(10 < x < 15| N(10,3.3)) =0.435

/.




Clarifications on continuous distributions.

~N(5,1)

ff(x)dx =1
Pla<X sb)= [ f(x)dx

P(X=x)=0

AREA UNDER CURVE OF PDF =1

(The integral of the normal)
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The multitude of probability
distributions allow us to to choose
those that match our data or
theoretical expectations in terms of
shape, location, scale.



Fitting a distribution is an art and science of
utmost importance in probability modeling.
The idea is you want a distribution to fit
your data model “just right” without a fit
that is “overfit” (or underfit). Over fitting
models is sometimes a problem in modern
data mining methods because the models
fit can be too specific to a particular data
set to be of broader use.

Seefeld 2007



So why do we use them? It’s all about
shape and scale!

* Because they provide a usable framework for
framing our questions, and allowing for
parametric methods; i.e likelihood and
Bayesian.

 Even if we do not know its actual distribution,
it is clear frequency data is generally going to
be better fit by a binomial than a normal
distribution. Why?



Why will it be a better fit?

* The binomial is bounded by zero and 1

e Other distributions (gamma, poisson, etc)
have a lower boundary at zero.

* This provides a convenient framework for the
relationship between means and variance as
one approaches the boundary condition.



Some discrete distributions
(leading up to why we use negative
binomial)

Binomial
Poisson
Negative-binomial



Random variables

* This is what we want to know the probability
distribution of.

* |.e. P(x|some distribution)

| will use “x” to be the random variable in each
case.



Binomial

Let’s say you set up a series of enclosures. Within each enclosure you place 25
flies, and a pre-determined set of predators.

You want to know what the distribution (across enclosures) of flies getting
eaten is, based on a pre-determined probability of success for a given predator

species.

You can set this up as a binomial problem.

N ( R calls this size) = 25 (the total # of individuals or “trials” for predation) in the

enclosure
p = probability of a successful predation “trial” (the coin toss)

x = # trials of successful predation. This is what we usually want for the probability
distribution.



Binomial

[N
\ X

pr(l-p)"

[N N!

\ X } x!(N—x)!<

You will often see x=k and hear “ N choose k”

You can think of this in two
ways.

A) A normalizing constant so
that probabilities sum to 1.

B) # of different combinations to
allow for x “successful”
predation events out of N total.



Example

 |f predator species 1 had a per “trial”
probability of successfully eating a prey
item of 0.2, what would be the probability
of exactly 10 flies (out of the 25) being
eaten in a single enclosure.

P(x=10| bi(N=25,p=0.2)) = 0.0118

Not so high. We can look at the expected probability distribution for different values of
X.
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The rub...

e Usually we are not interested in the
probability of a given number of “successfu
trials, but in estimating the parameter, p itself.

I”

* P(D[H)
e P(x|bi(N=25,p="?)



binomial

* 0<x<N
 Mean = Np (how do you estimate p)
e Var = Np(1-p)



Let’s say we had 100 flies per

enclosure, and predator species 3 was

probability of X
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predator species 3, bi(N=100,p=0.01)

While there may be a theoretical limit to the number of
flies that can be eaten, practically speaking it is unlimited
since the predation probability is so low.

- This is a lot like the situation we have with RNA-seq data.
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x = number of flies eaten out of 100



Poisson

When you have a discrete random variable
where the probability of a “successful” trial is
very small, but the theoretical (or practical)
range is effectively infinite, you can use a
poisson distribution.

Useful for counting # of “rare” events, like new
migrants to a population/year.

# of new mutations/offspring..
# counts of sequencing reads



Poisson

 |tis also (potentially) useful for RNA-seq
data! (although we will see not very useful).



Poisson

)
e "N\

x!

X is our random variable (# events/unit sampling effort) — read counts for a gene in a sample
A Is the “rate” parameter. i.e. Expected number of reads (for a transcript) per sample
A is the mean and the variance!!!!

For its relation to a binomial when N is large and p is small
A= N*p



Poisson

* Let’s say flies disperse to colonize a new patch
at a very low rate ( previous estimates suggest
we will observe one fly for every two new
patches we examine, A=0.5).

 What is the probability of observing 2 flies on
a new patch of land?

P(x=2| poisson(A=0.5)) = 0.076



Probability of observing x number of
flies on a patch given lambda=0.5

Poisson(lambda=0.5)

probability of X
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What happens as lambda increases?

proportion of samples for transcript x

A = 4 (expected # of reads for transcript x across samples
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Poisson mean and variance

* When lambda is small for your random
variable, you will often find that your data is
“over-dispersed”.

* That is there is more variation that expected
under Poisson (lambda).

* Similarly when lambda gets large, you will
often find that there is less variation than
expected under Poisson(lambda).
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Figure 1 Dependence of the variance on the mean for condition A in the fly RNA-Seq data. (a) The scatter plot shows the common-scale
sample variances (Equation (7)) plottec against the common-scale means (Equation (6)). The orange line is the fit w{g). The purple lines show the
variance implied by the Poisson cistribution for each of the two samples, that is, §; q;
edgeR. (b) Same data as in (a), with the y-axis rescaled to show the squared coefficient of variation (SCV), that is all quantities are divided by the
square of the mean. In (b), the solid crange line incorporated the bias correction describec in Supplementary Note C in Acditional file 1. (The plot
only snows SCV values in the range [0, 0.2). For a zoom-out to the full range, see Supplementary Figure 59 in Additional file 1)

. The dashed orange line is the variance estimate used by

Anders and Huber 2010 Genome Biology




Why poisson might not model
sequence reads well

Most RNA-seq data (and most count data in
biology) is not modeled well by poisson
because the relationships between means and
variances tend to be far more complicated
among (and within) biological replicates.

It has been argued (Mortzavi et al 2008) that
technical variation in RNA-seq is captured by
Poisson. | have my doubts even on this.



Quasi-poisson

Since over-dispersion is such a common issue, a
number of approaches have been developed to
account for it with count data.

One is to use a quasi-poisson.
Instead of variance(x) = A, it is

Variance (x) =\6

Where 6 is the (multiplicative) over-dispersion
parameter.



Negative binomial

* |n biology the Neg. Binomial is mostly used
like a poisson, but when you need more
dispersion of x (it needs to be spread out
more).

* The negative binomial is a Poisson distribution
where lambda itself varies according to a
Gamma distribution.



Negative binomial

k o\ x
Negative Binomial Distribution = F( X )( ) ( U )
T(k)x! \k+u) \k+u

Expected number of counts =p
Over-dispersion parameter = k

For our purposes all we care about is that

var(x) = u+ ku’



General(ized) linear models

* For response variables that are continuous,
yvou are likely familiar with approaches that
come from the general linear model.

y ~ N(ﬁo T /31)6,0’2)

A standard linear regression (if x is continuous).
If x is discrete this would be a t-test/Anova.



Continuity of Statistical Approaches

Process Models

Mixed Effects Model

Predictors: Fixed (random or both)
General Linear — Generalized Linear
Response: Model (normal) Model (hon-normal)
. ANOVA Regression ANCOVA
Predictors: . i
(discrete) (continuous) (both)

Number of T

Levels: t-test



Generalized linear models

But what do you do when your response variable is not normally distributed?

The framework of the linear model can be extended to account for different
distributions fairly easily (one major class of these is the generalized linear

models).



Continuity of Statistical Approaches

Process Models

Mixed Effects Model

Predictors: Fixed (random or both)
General Linear — Generalized Linear
Response: Model (normal) Model (hon-normal)
. ANOVA Regression ANCOVA
Predictors: . i
(discrete) (continuous) (both)

Number of T

Levels: t-test



Generalized Linear Models
(GLiM)

In many cases a general linear model is not appropriate because
values are bounded

— e.g. counts >0, proportions between 0 and 1
A generalization of linear models to include any distribution of errors
from the exponential family of distributions

* Normal, Poisson, binomial, multinomial, exponential, gamma, NOT negative
binomial

General Linear Model is just a special case of GLiM in which the errors
are normally distributed

Example, logistic regression
We will use likelihood for parameter estimation and inference



Generalizations of GLM

* Instead of a simple linear model:
Y=Db,+bx;+b,x, +e

— Assume that e’s are independent, normally distributed with mean
0 and constant variance s?

— Can solve for b’s by minimizing squared e’s

* GLiM considers some adjustment to the data to linearize Y
- a link function

Y=g(bgy+byx+byx,+e)
or f(Y)=b,+bx+b,x,+e
— For example for count data which are always positive

f(Y) = log(Y) log link



What is a link function?

The link function is a way of transforming the
observed response variable (LHS).

Goals
1) linearize observed response
2) Alter the boundary conditions of the data.

3) To allow for an additive model in the
covariates (RHS)



Poisson Family

Data are counts of something (i.e. 0, 1, 2, 3, 4...)
Number of occurrences of an event over a fixed period of time or space
Examples...

If the mean value is high then counts can be log-normal or normally distributed

When mean value is low then there starts to be lots of zeros and variance depends on
the mean

If upper end is also bounded then binomial would be better

Default link is the log link, variance function = u
— i.e., family = poisson (link = “log”, variance = “mu”
— Other option might be the sgrt link



Poisson Family

* Frequency Tables (log-linear or multinomial models)
— Comparison of counts among categories or cells
— Like a G-test (or y? test)



Poisson and nb Family

lOg(j\/) = ﬁo + /31x
or

M — 6/30 +px

Essentially it means you can log transform the sequence counts and use a
poisson, quasi-poisson or negative binomial to fit it
(most links are more complicated, this is nice and simple).

i.e. counts are modeled as . ,
counts; ~ pois(A = u, 0° = A)
: 2
counts; ~ gpois(A = u, 0° = A0)
counts; ~ nb(A = u, o’ = u+ uk)



Methods using nb glm

e edgeR (but it is not default, so beware!)
 DESeq (maybe DEXseq as well?)

* BaySeq

* Limma (voom —kind of sort of...).

 However these all model the variance quite
differently (how they borrow information across
genes to estimate mean-variance relationships).

See Yu, Huber & Vitek 2013 (Bioinformatics) for
discussion of this issue.



Methods using poisson and quasi-
poIsSsoNn

* tspm (two stage poisson model)

— Fits models with poisson first. If over-dispersed
then uses a quasi-poisson.

— Thus there are essentially two groups of genes.



Why this is so awesome

* Since we can fit these as a generalized linear
model, we can fit arbitrarily complex designs (if

we have sufficient sampling to estimate the
parameters).

 We can incorporate all aspects of read length,
library size, lane, flow cell in addition to all of the
important biological predictors (your treatments).

* NO t-tests for you!!!



Estimating over-dispersion (variance)
(or why programs seemingly doing the
same thing give different results)



Variances require lots of data to
estimate well (not just for count data)

* [t turns out that to estimate variances, you
need a lot more replication than you do for

means.

* However most RNA-seq experiments still have
small numbers of biological replicates.

* So how to go about estimating variances?



IF sample sizes are large (within and
between treatments).

* Most methods do well (based on NB, quasi-P
or non-parametric approaches).

 They can model individual level variances (and
potentially can use resampling approaches to
avoid having to make parametric
assumptions).



But if sample sizes (in terms of
biological replication) is small.

* Then we have a problem.

* This is where the software really tends to
differ, as they all make different assumptions
about the variance, and how best to model it.

* |n particular edgeR and DEseq use some
methods to borrow information across genes
(and have options to change this process).

* This can dramatically change the results.

Anders, S., & Huber, W. (2010). Differential expression analysis for Anders et al (2013). Count-based differential expression

sequence count data. Genome Biology, 11(10), R106. doi:10.1186/ gf‘a'ysz of RN’?\lseq”eECi“g da;ta;g”glsg‘;dﬂ%
gb-2010-11-10-r106 ioconductor. Nature Protocols, 8(9), -



Table 1. Existing and proposed approaches for differential analysis of RNA-seq experiments with two conditions

Probability model Estimation of dispersion Testing n=1 Time
(a) sSeq (proposed) Xgi ~ N B(syttgi, &o/5y) ¢:59 = 86 + (1 — 8)¢™, where £ is a Hy: gy = fien Yes  min
(this manuscript) common dispersion and § is a weight Exact test
(b) edgeR (Robinson X5 ~ NB(mypgi, ¢:) $5%<R® maximize lincar combination of Ho : pes = pes Yes* min
and Smyth, 2008) per-gene and common-dispersion Exact or GLM-based test
conditional likelihoods
(c) DESeq (Anders Xy ~ NB(sjttgi, byi) — R U S Hy: pos = Hes Yes  min
and Huber, 2010) by =\ Ve — iy 25 ) Exact or GLM-based test
J
¥, is estimated as function of the mean
(d) baySeq (Hardcastle X5 ~ N'B(Nypy:, ¢,) :132,"‘-"5‘"' maximize per-gene integrated Hy : pes = Pes Yes h
and Kelly, 2010) Empirical priors on sets quasi-likelihood Posterior probability cutoff
of parameters
(¢) BBSeg X, ~ Binom(py:, Nyj) #5854 maximize per-gene marginal Hy: B =0 Wald test Yes h
(Zhou et al., 2011) Pgi ~ Beta, logitE{p,;} = Zp, likelihood; is a free parameter or
V(p.:) = E(py) (1 — E(py))ds a function of the mean
(f) SAMseq (Li and Non-parametric Hy: same distributions Aand B No  min
Tibshirani, 2011) Wilcoxon test & resampling

(2) 55 is the size factor for sample jin condition i as defined in (Anders and Huber, 2010). u,; is the expected normalized expression of gene g for a sample in condition i. é‘}"" is
the per-gene dispersion estimate using the method of moments in Equation (6).

(b) my is the ‘effective’ library size. p,; is the probability that a read in / maps to gene g. *Up to v2.4.6.

(¢) ¢, is gene- and condition-specific dispersion. fi,; and f’,; can be estimated by the method of moments or by the Cox-Reid corrected Maximum Likelihood.

(d) Ny is the size of the library i from condition j. py is as in (b).

(€) pyi is as in (b). Ny is as in (d). B is the coefficient of the linear predictor associated with an indicator Z of conditions. Column ‘Time’ is the run time for the experimental
datasets in Section 4 on a laptop computer.

Yu et al (2013). Shrinkage estimation of dispersion in Negative Binomial models for RNA-seq experiments with small sample size. Bioinformatics, 29(10),
1275-1282.
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Figure 1 Dependence of the variance on the mean for condition A in the fly RNA-Seq data. (a) The scatter p'ot shows the common-scale
sample variances (Equation (7)) plottec against the common-scale means (Equation (6)). The orange line is the fit w{g). The purple lines show the

variance implied by the Poisson cistripution for each of the two samples, that is,

s,q

. The dashed orange line is the variance estimate used by

edgeR. (b) Same data as in (a), with the y-axis rescaled to show the squarec coefficient of variation (SCV), that is all quantities are divided by the
square of the mean. In (b), the solid orange line incorporated the bias correction described in Supplementary Note C in Acditiona! file 1. (The plot
only shows SCV values in the range [0, 0.2). For a zoom-out to the full range, see Supplementary Figure S9 in Additional file 1)

Anders and Huber 2010




Let’s think about this.
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We can also “shrink” estimates based
on over-dispersion....
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Take home

 With small sample sizes, the methods use
different approaches to get gene-wise over-
dispersion (based on all data).

e EdgeR is more powerful (more significant hits)
than DGE generally. But much more
susceptible to false positives due to outliers.

e DGE2 “should” be somewhere in the middle.






Biological replication gives far more statistical
power than increased sequencing depth within a
biological samplel!!!l

* Sequencing (and library prep) costs are still sufficiently
expensive that most experiments use small numbers of
biological replicates.

* Given the additional costs of library costs (~225S/
sample at our facility), many folks go for increased
depth instead of more samples.

* For a given level of sequencing depth (total) for a
treatment, it is far better to go for more biological
replicates, each at lower sequencing depth (rather than
fewer replicated at higher sequencing depth).
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How do the methods compare for real
data?

A edgeR DESeq

Kvam et al. 2012



AUC

How do the methods compare in a different set
of simulations?

AUC, B

B

0.8

0.6

0.2

0.0

AUC

TTTTTTrTroT
OOV OGN O Ny

rrrrrrrrey
Wr-’?«zvmnvmmw

TrrrrerrrenmT
COCCOCCOCOD

AuC, B3
1.0 1
é.
0.8 23
T
4 % o—-é’ gt i ¥
L
0.6
0.4
0.2 4
0.0
rrrrTryrrad rTrrrrrryrTy TrryrryrryTy
““““““f%&“‘”“ L%Egégi’%”g 29020000000
o
ko %‘g vagritn LG
; 5 R
7]

AUC, B2
1.0 1
‘..V. * ;’
gt tiTaTes
0.8 9 R+~ 3
é“ “
0.6
0.4 4
0.2
0.0 7
rrrrrrerTy TmrrrrrrerT rrrrrrrrred
NNN“NNNNNNN o U L [T U S T T | OOOOOOOOOOO
SECE vgﬁ&? GobiR i3 s5e
2928¢ 4 7 g
_ mo B W BQ & uhm
5% b4
2000
AUC, B2
1.0 1
PR
-— -
o —rrBe=
0.8 1 ajs_ o e * *
S e, -
0.6
0.4 4
0.2 4
0.0+
rrrrrrryrTy TTrrrryrryuy rrrrrryrry
OO N OOy Oy Oy e L T L T T T} [elenlelolelolelolale]

v

e

SEEEESEE
E

Will explain

ROC (receiver
operator curves)
and the area
under curves on
board.

Soneson 2012



Differential expression (subset, see my
github page)

DES@Q rtpyfwmunchinimain.gov/pubmed /2087621 )

* DeSeq2

 Limma/voom

» EDGE-R

 Sailfish (kmer approach)

* EBseq (RSEM/EBseq)
* Beers simulation pipeline (i mwwwciwpen.essers )

D E XS e q ( http://bioconductor.org/packages/reIease/bioc/htmI/DEXSeq.htmI)
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