NGS2014 Monday & Tuesday

Today, Tomorrow and maybe part of Wed we are
going to get more in depth on aspects of RNAseq.

| will be giving a lecture on some additional
aspects of RNAseq (M&T).

Matt will go over in more detail Transcriptome
assembly (and will discuss SOAP-deNovo Trans as
well as Trinity).

Chris, Matt and Meg will help lead you through a
“choose your own adventure” of RNAseq analysis.



NGS2014 Monday & Tuesday

 Tomorrow | will give a short lecture on some
of the basics of performing differential
expression analysis with counts from RNAseq
data.

* Meg and Matt may discuss or do a short
tutorial on aspects of annotating and
“cleaning” your transcriptomes.

 We will also do a tutorial comparing some of
the results of your “counting” from today.



General considerations for RNA-seq
guantification for differential
expression

or how to count.

lan Dworkin



First some apologies (I am moving
back to Canada, and | need to practice
this).

* From all | have seen and heard, Meg has
already covered a number of important
aspects of this, so there will be some
repetition.

* | am purposefully repeating some of the same
nighlights in a few places, because it truly
pears repeating!




Biological replicates Not technical
ones.

 Meg already went over this, but there is little
purpose in using technical replication from a
given biological sample UNLESS part of your
guestion revolves around it.

* Focus on biological variability. While you are
confounding some sources of technical and
biological variability, we already know a lot
about the former, and little about the latter.



Sampling
Replication
Blocking

Randomization

Blocking

Blocks in experimental design represent some factor
(usually something not of major interest) that can strongly
influence your outcomes. More importantly it is a factor
which you can use to group other factors that you are
interested in.

For instance in agriculture there is often plot to plot
variation. You may not be interested in the plot themselves

but in the variety of crops you are growing.

But what would happen if you grew all of strain 1 on plot 1
and all of strain 2 on plot 27

Whiteboard.

These plots would represent blocking levels



Sampling

Replication

Blocking

Randomization

Blocking

In genomic studies the major blocking levels are often the
slide/chip for microarrays (i.e. two samples /slide for 2
color arrays, 16 arrays/slide for lllumina arrays).

For GAIll/HiSeqg RNA-seq data the major blocking effect is
the flow cell itself, or lanes within the flow cell.
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Sampling
Replication
Blocking

Randomization

Blocking

Incorporating lanes as a blocking effect

Balanced Blocked Design

..

+ Sequence technical replicates

» Treatment A

« Biological replicate

* RNA extraction

+ Bar-code and pool

* Preparation for sequencing

Lane 1 Lane2 Lane3 Laned4 Lane5 Laneb

Confounded Design

« Treatment A A A B B B

« Biological replicate

* RNA extraction and

preparation for
sequencing

» Sequence each

sample in alane

Lane1 Lane2 Lane3 Laned4 Lane5 Laneb

Auer and Doerge 2010




Blocking designs

Balanced Incomplete Blocking

Sampling Design (BIBD)
Replication

Let’s dissect these subscripts.
Blocking T111 T211 T311

Randomization

Balanced for treatments across flow cells.. Randomized for location Auer and Doerge 2010



What is your research question?:

What are the goals of your research?

Why did you generate all of the
RNAseq data in the first place?



What can you use RNAseq data for?



Using RNAseq

Transcriptome assembly.
Improving genome assembly/annotation.
SNP discovery (large genomes)

Transcript discovery (variants for Transcription
start site, alternative splicing, etc..)

Quantification of (alternative transcripts)

Differential expression analysis across
treatments.



Using RNAseq

Transcriptome assembly.
Improving genome assembly/annotation.
SNP discovery (large genomes)

Transcript discovery (variants for Transcription
start site, alternative splicing, etc..)

Differential expression analysis...



Using RNAseq: differential expression

Differential expression of what?

Differential expression at the level of “genes”
Allele specific expression
Quantification of alternative transcripts



Your primary goals of experiment
should guide how you perform your
experiment.

* The exact details (# biological samples, sample
depth, read_length, strand specificity) of how
you perform your experiment needs to be
guided by your primary goal.

* Unless you have all the SS, no single design
can capture all of the variability.



Your goals matter

e For instance: If your primary interest in discovery
of new transcripts, sampling deeply within a
sample is probably best.

* For differential expression analyses, you will
almost never have the ability to perform
Differential expression analysis on very rare
transcripts, so it is rarely useful to generate more
than 15-20 million read pairs (see Meg’s slides).



Are single _ended reads ever useful?

In my experience (plants and animals), almost
never.

My primary organism (Drosophila melanogaster)
is one of the best annotated and experimentally

validated genomes.

Even still, we get surprising ambiguity for reads
75bp and shorter, which mostly goes away with
PE.

Hopefully less of a problem now (as most people
are doing 100 -150 bp+).






What was once thought to be separate
goals are now clearly recognized as
intertwined.

* Early work for RNA-seq tried to “mirror” the
type of gene level analysis used in

microarrays.
* However, RNA-seq has demonstrated how
important it is to take into account alternative

transcripts, even when attempting to get
“gene level” measures.



How do we put together a useful
pipeline for RNAseq

 What are the steps we need to consider?



How do we put together a useful
pipeline for RNAseq

What are the steps we need to consider?
Genome/transcriptome assembly.
Mapping reads to genome/transcriptome.

Deal with alternative transcripts (new
transcriptome)?

Remap & count reads.
Differential expression.



FASTQC, RNASeQC, fastx, RSeQC, ...

QC & read
cleanup

TopHat, STAR, MapSplice, SpliceMap,
HMMSplicer, TrueSight, SOAPsplice, PASSion,

BWA
Bowtie PALMapper, SplitSeek, Supersplat, SeqSaw,
Bowtie2 MapNext, GSNAP, QPALMA, OSA

Spliced
alignment to
genome

Unspliced
alignment to
transcriptome

Gapped
alignment
to
genome

Ungapped
alignment
to
txptome

Count reads
mapping to
Gene

DESeq

RSEM, EdgeR
eXpress voom/limma
) Cufflinks,
Transcriptome Cufflinks RABT,
Reconstruction MISO. iReckon
Scripture,
IsoLasso
: DEXSe!
RSEM, I rQuant, .
eXpress FluxCapacitor, ...
Transcript
quantification

Cuffdiff2

RNA-seq Workflows and Tools. Stephen Turner. Figshare. http://dx.doi.org/10.6084/m9.figshare.662782



The “tuxedo” protocol for RNA-seq

Condition A Condition B

.

Mapped Mapped

reads \ /’- reads
Y
- =

Assembled Assembled

transcripts \ / transcripts

!

Final
transcriptome
assembly

Steps 3-4

Mapped Mapped

reads \ f reads

Differential
expression results

Expression

plots Trapne“ et al 2012



Pipelines for RNA-seq (

geared towards splicing)
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Methods to Study Splicing from RNA-Seq. Eduardo Eyras, Gael P. Alamancos, Eneritz Agirre.
Figshare. http://dx.doi.org/10.6084/m9.figshare.679993 also see
http://arxiv.org/abs/1304.5952
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The point...

* There is no single “best” way forward yet. It is
probably best to try several pipelines and
think carefully about each of the steps.



How should we map reads

Do we want to map to a reference genome
(with a “splice aware” aligner)?

* Or do we want to map to a transcriptome
directly.

 What is preferable, to generate a de novo
transcriptome or map to a “closely” related

species?



And before we map reads...

 How should we filter (based on quality) reads
(if at all)?

 What are some of the considerations (Matt...)



Mapping to a transcriptome

* What are the downsides to mapping to a
transcriptome?



Mapping to a transcriptome

* unspliced read aligners are useful against a
transcript (or cDNA) database, such as that
generated for a de novo transcriptome.

* For this BW is faster than seed based
approaches (shrimb & stampy), but the latter
may be preferred if mapping to "distant"
transcriptomes.



Mapping to the genome

* How do we deal with alternative transcripts or paralogs
during mapping?

"splicing aware" aligners:
— Exon First: (tophat, MapSplice, SpliceMap) FiglA Garber
— Step 1 - map reads to genome
— Step 2 -unmapped reads are split, and aligned.

* Seed & extend (FiglB Garber) (GSNAP, QPALMA)

— kmers from reads are mapped (the seeds), and then
extended
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The variation in the mapping step (at
least with a reference genome) seems
to have modest effects.
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Differentially expressed genes based on software for quantification

Differentially
expressed
c / genes based
Stamp TopHat on software

for mapping

i SNV & INDEL in probe u Conflict from probe design “ Low expression signal u Qvalue < 0.05
“ Unknown “ Not in array SNV & INDEL in ORF

Nookaew et al 2102 NAR



Which to use

* |f a (close to?) perfect match transcriptome assembly is
available for mapping. Burrows-wheeler based aligners
can be much faster than seed based methods (upto
15x faster)

 BW based aligners have reduced performance once
mismatches are considered.

— Exponential decrease in performance with each additional
mismatch (iteratively performs perfect searches).

— Seed methods may be more sensitive when mapping to
transcriptomes of distantly related species (or high
polymorphism rates).

From Garber et al. 2011



How could mapping reads (whether to
a reference genome or transcriptome)
influence our downstream counts?



How could mapping reads (whether to
a reference genome or transcriptome)
influence our downstream counts?



Merging all transcripts?

Cufflinks assemblies
for condition A

Cufflinks assemblies
for condition B

Merged assembly
from Cuffmerge

FlyBase reference
annotation

—

—

—Replicate 1 o
Replicate 2 w=

Replicate 3

Replicate 1
Replicate 2
Replicate 3

Trapnell et al 2012.



Counting

e One of the most difficult issues has been how
to count reads.

* What are some of the issues that we need to
account for during counting of reads?



Counting



Counting

What are we trying to count?

Gene level measure (eXpress, corset, RSEM,
HTSeq,...).

Exon level (HTSeq, ?7?7)

Transcript level (HTSeq, Cufflinks, ....)



Counting

We are interested in transcript abundance.

But we need to take into account a number of
things.

How many reads in the sample.
Length of transcripts

GC content and sequencing bias
(how many transcripts)



Old ways of counting Counting

 RPKM (reads aligned per kilobase of exon per
million reads mapped) — Mortazavi et al 2008

 FPKM (fragments per kilobase of exon per
million fragments mapped). Same idea for
paired end sequencing.

* Transcripts per million (we will come to that).



None of these measures are great for
differential expression analysis.

* For appropriate differential expression analysis
(as with all statistical modeling), keeping all of
the data is better.

* So having counts of mapped reads, along with
information like GC content, transcript length,
total # reads is far more useful.

e \We will discuss this tomorrow.



Accounting for multiple isoforms
(when counting alternative

transcripts).
e - Only count reads that map uniquely to an isoform
(Alexa-Seq, HTSeq). Can be very problematic, when

isoforms do not have unique exons.

e -so called "isoform-expression” methods (cufflinks,
MISO) model the uncertainty parametrically (often
using MLE). The model with the best mix of isoforms
that models the data (highest joint probability) is the
best estimate. How this is handled differs a great deal
by the different.
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Condition 1 Condition 2

== Condition 1
== Condition 2

Expression

Expression estimate

b
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However...

 There has been a great deal of discussion and
disagreement about this (see seganswer
forums, and “discussions” between Simon
Anders and Lior Patcher).

* Fundamentally there are numerous cases
where both methods fail. So take care.




Seqganswer or blog postings of use

http://seqanswers.com/forums/showpost.php?p=102911&postcount=60

http://gettinggeneticsdone.blogspot.com/2012/11/star-ultrafast-universal-rna-seg-aligner.html
http://gettinggeneticsdone.blogspot.com/2012/12/differential-isoform-expression-cuffdiff2.html
http://gettinggeneticsdone.blogspot.com/2012/09/deseqg-vs-edger-comparison.html




Problems with cufflink and cuffdiff?
Reproducibility...

http://seqanswers.com/forums/showthread.php?t=20702

http://seqanswers.com/forums/showthread.php?t=17662

http://seqanswers.com/forums/showthread.php?t=23962
http://seqanswers.com/forums/showthread.php?t=21020

http://seqanswers.com/forums/showthread.php?t=21708
http://www.biostars.org/p/6317/




Counting at the “gene” or exon level
may be simpler (at least initially).
* i.e. all mapped reads for transcripts associated

with a particular “gene” get counted (HTSeq,
corset, eXpress, RSEM (?)).



Counting reads

e Htseq (python library) works with Deseq,.

* |n our experience this is both easy (ish) to use
and counting in a sensible manner.

* | remain very confused about getting “counts”
out of both RSEM and Cufflinks...



Differential expression

D E S e q (http://www.ncbi.nIm.nih.gov/pubmed/20979621)

EDGE-R

EBseq (RSEM/EBseq)

RSEM (e fseueyisnsossiscataramy)
EXPress (ip:/bio.mathberkeleyedu/express/overviewhim

Bee rS Si m U | ati O n p i pe | i n e(http://www.cbil.upenn.edu/BEERS/)
D EXS e q (http://bioconductor.org/packages/release/bioc/htmI/DEXSeq.html)
Limma (voom)




Example workflows

e http://jura.wi.mit.edu/bio/education/
hot topics/QC HTP/QC HTP.pdf

e http://jura.wi.mit.edu/bio/education/
hot topics/RNAseq/RNAsegDE Dec2011.pdf




